Выбрать главу

В течение многих лет Эйнштейн ставил всё более изощрённые вопросы, нацеленные на то, чтобы вскрыть пробелы в структуре квантовой механики. Один из таких вопросов, поставленный в 1927 г. на Пятой физической конференции Сольвеевского института{71}, опирался на тот факт, что даже хотя вероятностная волна электрона и может выглядеть так, как на рис. 4.5, но когда бы мы ни определяли местонахождение электрона, мы всегда обнаруживаем его в определённом месте, хотя это место всякий раз меняется. Эйнштейн задал вопрос: не означает ли это, что волна вероятности является просто вре́менной заменой более точного описания, которое ещё предстоит открыть и которое будет точно предсказывать местоположение электрона? В конце концов, если электрон обнаружен в точке X, не означает ли это в действительности, что он был в точке X или очень близко к ней перед своим обнаружением? И если это так, — продолжал Эйнштейн, — не означает ли это, что зависимость квантовой механики от волны вероятности — волны, которая говорит, что с некоторой вероятностью электрон мог находиться далеко от точки X, — свидетельствует о неадекватности теории для описания истинной фундаментальной реальности?

Позиция Эйнштейна проста и убедительна. Что может быть более естественным, чем ожидать, что частица находилась именно там, где она была обнаружена мгновением позже, или по крайней мере близко от этого места? Если это так, то более глубокое понимание физики должно предоставить эту информацию и тем самым покончить с более грубым вероятностным описанием. Но датский физик Нильс Бор и окружавшие его защитники квантовой механики не были согласны с этим. Подобные аргументы, — парировали они, — основаны на привычном мышлении, в рамках которого каждый электрон должен придерживаться своей определённой траектории движения, по которой он скитается туда и обратно. Но это утверждение полностью противоречит рис. 4.4, ведь если каждый электрон действительно придерживается одной определённой траектории — как в классическом образе пули, выпущенной из ружья, — то чем же объяснить наблюдаемую интерференционную картину: что и с чем будет интерферировать? Отдельные пули, выстреливаемые одна за одной из одного ружья, не могут, несомненно, интерферировать друг с другом, так что если электроны движутся как пуля, то чем объяснять картину на рис. 4.4?

Согласно Бору и Копенгагенской интерпретации квантовой механики, которую он яростно отстаивал, до измерения положения электрона бессмысленно даже спрашивать, где он находится. Он не имеет определённого положения. В волне вероятности закодирована вероятность того, что в ходе опыта электрон будет обнаружен здесь или там, и это действительно всё, что можно сказать о его положении. Больше сказать нечего. Электрон имеет определённое положение в обычном интуитивном смысле только в момент, когда мы «смотрим» на него — т. е. когда измеряем его положение, — точно определяя, где он находится. Но до (и после) этого всё, что электрон имеет, — это возможные положения, описываемые волной вероятности, которая, как и всякая волна, подвержена интерференционным эффектам. Дело обстоит не так, как будто электрон имеет определённое положение, но мы его не знаем, пока не проведём свои измерения. Вопреки тому, что вы ожидали, электрон просто не имеет определённого положения до проведения измерения.

Это очень странная реальность. С этой точки зрения, измеряя положение электрона, мы не измеряем объективную, независимо ни о чего существующую характеристику реальности. Скорее, акт измерения глубоко сплетён с созданием самой реальности, которая наблюдается. Перенося это утверждение с электронов на повседневную жизнь, Эйнштейн саркастически заметил: «Вы действительно верите в то, что Луны нет на небе, пока мы не взглянем на неё?» Адепты квантовой механики ответили на это парафразом старой пословицы про дерево, падающее в лесу[72]: если никто не смотрит на Луну — если никто не «измеряет её положение, глядя на неё» — то для нас нет способа узнать, есть ли она на месте, так что вопрос теряет смысл. Эйнштейн нашёл это глубоко неудовлетворительным. Это в корне расходилось с его концепцией реальности; он твёрдо верил, что Луна всегда на своём месте, независимо от того, смотрит ли на неё кто-нибудь или нет. Но сторонники квантовой механики остались при своих убеждениях.

Второй вопрос Эйнштейна, поставленный в 1930 г. на Сольвеевской конференции, вплотную примыкал к первому. Эйнштейн описал гипотетический прибор, который (через хитроумную комбинацию линейки, часов и устройства, напоминающего затвор фотоаппарата), как казалось, устанавливал, что частица вроде электрона должна иметь определённые характеристики — ещё до их измерения, — чего не может быть согласно квантовой механике. Детали механизма несущественны, но исход спора очень ироничен. Изучив возражение Эйнштейна, Бор был совершенно выбит из колеи — сначала аргументы Эйнштейна показались ему безукоризненными. Но за считанные дни Бор оправился и полностью опроверг аргументы Эйнштейна. И самым удивительным оказалось то, что опровержение Бора основывалось на общей теории относительности! Бор понял, что Эйнштейн упустил из вида собственное открытие искажения времени гравитацией — что показания часов зависят от гравитационного поля, в котором они находятся. С учётом этой поправки Эйнштейн вынужден был признать, что его выводы ложатся прямо в русло ортодоксальной квантовой теории.

Несмотря на свои поражения в споре, Эйнштейн остался глубоко неудовлетворён квантовой механикой. В последующие годы он продолжал атаковать Бора и его коллег, выдвигая один за другим новые контраргументы. Особенным нападкам он подвергал так называемый принцип неопределённости, прямое следствие квантовой механики, сформулированный в 1927 г. Вернером Гейзенбергом.

Гейзенберг и принцип неопределённости

Принцип неопределённости даёт количественную меру того, насколько тесно вероятность вплетена в ткань квантовой Вселенной. Чтобы понять это, представим себе комплексные обеды, предлагаемые по одинаковой цене в некоторых китайских ресторанах. Перечень блюд разбит на две колонки, A и B, и если, например, вы заказали первое блюдо из колонки A, вы уже не можете заказать первое блюдо из колонки B; если вы заказали второе блюдо из колонки A, вы уже не можете заказать второе блюдо из колонки B и т. д. Таким путём ресторан устанавливает диетический дуализм, кулинарную дополнительность (нацеленную в данном случае на то, чтобы вы не выбрали все самые дорогие блюда). Заказывая комплексный обед, вы можете выбрать либо утку по-пекински, либо лобстера по-кантонски, но не то и другое вместе.

Принцип неопределённости Гейзенберга работает сходным образом. Он утверждает, грубо говоря, что физические характеристики объектов микромира (положения частиц, их скорости, энергии, моменты импульса и т. д.) можно разделить на два списка, A и B. И, как установил Гейзенберг, знание первой характеристики из списка A в корне ограничивает вашу возможность установить величину первой характеристики из списка B; знание второй характеристики из списка A в корне ограничивает вашу возможность установить величину второй характеристики из списка B и т. д. Более того, подобно тому как если можно было бы заказывать обеды, содержащего немного утки по-пекински и немного лобстера по-кантонски, но не превышая при этом установленной цены комплексного обеда, точно так же чем точнее вы знаете какую-то характеристику из первого списка, тем менее точно вы будете знать величину соответствующей характеристики из второго списка. Принципиальная невозможность определить одновременно все характеристики из обоих списков (т. е. точно определить величины всех характеристик микромира) и есть та неопределённость, что вскрывается принципом Гейзенберга.

Например, чем точнее вы знаете, где находится частица, тем менее точно вы можете установить её скорость. Аналогично, чем точнее вы знаете, с какой скоростью движется частица, тем с меньшей точностью вы можете определить, где она находится. Таким путём квантовая теория устанавливает собственный дуализм: вы можете точно определить некоторые физические характеристики микромира, но тем самым вы лишаетесь возможности точно установить ряд других характеристик, дополнительных первым.

Чтобы понять, почему это так, посмотрим, какую картину рисовал сам Гейзенберг; эта картина достаточно груба и неполна в отдельных аспектах, но полезна с точки зрения интуитивного понимания. Когда мы измеряем положение любого объекта, мы тем или иным образом взаимодействуем с ним. Если мы ищем выключатель в тёмной комнате, то узнаём о своей находке на ощупь. Когда летучая мышь охотится, она испускает ультразвуковые волны и по их отражению судит об окружающем её пространстве. Чаще всего мы определяем положение объекта, глядя на него — воспринимая свет, отражённый от объекта и попадающий на сетчатку наших глаз. Самое главное в этих примерах заключается в том, что эти взаимодействия влияют не только на нас, но и на объект, положение которого определяется. Даже свет, отражаясь от объекта, немного толкает его. Конечно, на вещи, с которыми мы сталкиваемся в повседневной жизни, вроде книги в ваших руках или часов на стене, микроскопический толчок от отражённого света не оказывает сколько-нибудь заметного влияния. Но когда свет сталкивается с элементарной частицей вроде электрона, он оказывает на неё большое воздействие: отскакивая от электрона, свет изменяет его скорость примерно так же, как ваше движение меняется под порывом сильного ветра, налетевшего из-за угла улицы. В действительности, чем точнее вы хотите определить положение электрона, тем более сфокусированным и мощным должен быть луч света и тем большее влияние он окажет на движение электрона.