Выбрать главу

До сих пор центром нашего внимания была геометрия Евклида — теория, состоящая из пяти постулатов «Начал», правил вывода, подобных утверждению «равные одному и тому же равны и между собой», и всех теорем о кругах, треугольниках и многоугольниках, которые только может представить себе читатель. Мы также упомянули о неевклидовой геометрии, которая содержит первые четыре постулата геометрии Евклида и отрицание пятого постулата (утверждение, согласно которому через точку, не лежащую на данной прямой, можно провести бесконечно много прямых, параллельных данной). Однако настоящим главным героем этой книги является арифметика — теория, в которой рассматриваются числа, используемые при счете и называемые натуральными.

Аксиомы арифметики

В свете всего вышесказанного для определения арифметики нужно прежде всего найти ее аксиомы. В конце XIX века эти поиски занимали умы многих ученых, поскольку в первой половине столетия их мечтой было описать окружающий мир, а во второй — точно определить, что же такое натуральные числа. А уже на основе этих чисел нетрудно найти определение для других видов чисел, например отрицательных или дробных: так, число —1 получается добавлением знака «минус» к натуральному числу 1 и используется, когда мы хотим указать на различие между двумя направлениями, например на шкале термометра или при движении средств на банковском счете. В свою очередь, 2/3 получается делением 2 на 3 и используется, когда одно число нельзя нацело разделить на другое. Но как определить числа, не определяемые на основе других?

Ученые давали различные ответы на этот вопрос. Георг Кантор (1845–1918) предложил определять натуральные числа как числа, описывающие количество элементов множества, однако, как вы увидите в следующей главе, это «лекарство» только ухудшило положение «больного». Неудача Кантора, несомненно, обрадовала его заклятого врага Леопольда Кронекера (1823–1891), для которого вопрос об описании натуральных чисел был закрыт с формулировкой: «Бог создал натуральные числа. Всё остальное — работа человека». Джузеппе Пеано (1858–1932) был не настолько экзальтированным и предложил новую точку зрения, которую впервые представил в 1889 году в книге под названием «Начала арифметики, изложенные новым методом». До настоящего момента, рассуждал Пеано, предпринимались попытки сначала определить натуральные числа, а затем найти аксиомы, на основе которых можно было бы доказать теоремы. Почему бы не поступить наоборот? Сначала можно составить перечень аксиом, затем определить числа как объекты, удовлетворяющие им, и, возможно, в числе этих объектов будут не только привычные нам числа.

Обложка книги Джузеппе Пеано «Начала арифметики, изложенные новым методом».

Этот хитроумный шаг позволил Пеано возвести здание арифметики на основе всего пяти аксиом, пятая из которых, известная как аксиома индукции, вновь оказалась немного сложнее остальных. В основу новой арифметики легли особое число ноль и операция, ставящая в соответствие каждому натуральному числу другое, которое называется следующим за ним. Далее этот итальянский математик предложил описать на этом языке натуральные числа как объекты, обладающие следующими свойствами:

1) ноль есть натуральное число;

2) число, следующее за натуральным, тоже является натуральным;

3) ноль не следует ни за каким натуральным числом;

4) всякое натуральное число следует только за одним натуральным числом;

5) если множество А содержит ноль и содержит следующее число для любого числа, принадлежащего этому множеству, то А содержит все натуральные числа.

Первая теорема, которую можно доказать на основе аксиом Пеано, гласит, что единица отлична от нуля, однако сначала нужно объяснить, что такое «единица». Внимательно изучив доказательство этой теоремы, можно получить представление о том, как работать с аксиомами и правилами вывода. Как мы уже говорили, доказательство того, что единица отлична от нуля, обязательно должно начинаться с аксиомы, каковой является аксиома Пеано: «число, следующее за натуральным, тоже является натуральным» (1). Затем можно использовать другую аксиому или высказывание, получаемое из предыдущих согласно логическому правилу вывода.