Выбрать главу

Когда образуется позитроний, то можно ожидать, что в течение 1/4 времени он будет превращаться в состояние со спином 0 и в течение 3/4 времени — в состояние со спином 1 (с m=-1,0 или +1). Так что 1/4 времени будет происходить двухфотонная аннигиляция. Остальные 3/4 времени двухфотонная аннигиляция происходить не может. Аннигиляция происходит, но на три фотона. Такой аннигиляции труднее дождаться, и время жизни получается в 1000 раз дольше — около 10-7 сек. Это и наблюдается на опыте. Аннигиляцией состояния со спином 1 мы подробнее заниматься не будем.

До сих пор мы, опираясь на сохранение момента количества движения, считали, что состояние позитрония с нулевым спином может превращаться в два правых фотона. Имеется и другая возможность: это состояние может превратиться в пару левых фотонов, как показано на фиг. 16.8. Следующий вопрос — каково соотношение между амплитудами этих двух типов распада? Это можно узнать, учтя сохранение четности.

Но для этого нам нужно знать четность позитрония. Физики-теоретики показали (сложным путем, который нелегко пояснить), что четности электрона и позитрона (его античастицы) должны быть противоположны, так что основное состояние позитрония со спином 0 должно обладать отрицательной четностью. Мы просто предположим, что четность отрицательна, и, поскольку мы получим согласие с экспериментом, мы сочтем это достаточно убедительным доводом.

Посмотрим же, что произойдет, если мы проделаем инверсию процесса на фиг. 16.6. При инверсии оба фотона меняют свои направления и поляризации. Обращенная картина выглядит так, как показано на фиг. 16.8.

Фиг. 16.8 Другой мыслимый процесс аннигиляции позитрония.

Если считать, что четность позитрония отрицательна, то амплитуды процессов на фиг. 16.6 и 16.8 должны иметь обратные знаки. Пусть |R1R2> — конечное состояние на фиг. 16.6, где оба фотона правые, а |L1L2> — конечное состояние на фиг. 16.8, где оба фотона — левые. Истинное конечное состояние (обозначим его |F>) должно быть таким:

(16.19)

Тогда инверсия поменяет местами все R со всеми L и приведет к состоянию

имеющему по сравнению с (16.19) знак минус. Значит, конечное состояние |F> обладает отрицательной четностью, совпадающей с четностью первоначального состояния позитрония со спином 0. Это единственное конечное состояние, которое сохраняет и момент количества движения и четность. Можно, конечно, вычислить амплитуду того, что произойдет распад в это состояние, но мы не будем этим заниматься, нас сейчас интересует только поляризация.

Что же означает состояние (16.19) физически? Один из выводов таков: если мы наблюдаем пару фотонов при помощи двух детекторов, которые могут порознь считать число левых или число правых фотонов, то мы всегда будем видеть одновременно либо пару правых, либо пару левых фотонов. Иначе говоря, если вы встанете по одну сторону позитрония, а ваш приятель по другую, то вы сможете, измеряя поляризацию, сказать вашему приятелю, какая поляризация у него получилась. С вероятностью 50% вы будете ловить то левый, то правый фотон; что вы поймаете, то и предсказывайте.

Раз левая и правая поляризации встречаются поровну, то все это сильно смахивает на линейную поляризацию. Спросим себя, что будет, если наблюдать фотон с помощью счетчиков, которые воспринимают только линейно поляризованный свет? Поляризацию γ-квантов измерять не так легко, как поляризацию света; нет таких поляризаторов, которые на столь коротких волнах хорошо работают. Но вообразим, чтобы облегчить обсуждение, что такое бывает. Пусть имеется счетчик, который воспринимает только x-поляризованный свет, а по ту сторону позитрония стоит кто-то, кто тоже наблюдает линейно поляризованный свет, но только, скажем, y-поляризованный. Каков шанс, что вы оба одновременно заметите фотоны от аннигиляции? Нужно найти амплитуду того, что |F> будет в состоянии |х1y2>. Иными словами, мы ищем амплитуду

которая, конечно, равна просто разности

(16.21)

Далее, хотя нам сейчас нужны двухчастичные амплитуды для двух фотонов, с ними здесь можно обращаться так же, как с амплитудами для отдельных частиц, ведь каждая частица действует независимо от другой. Это значит, что амплитуда <x1y2|R1R2> попросту равна произведению двух независимых амплитуд <x1|R1> и <y2|R2>. Эти амплитуды (см. табл. 15.3) равны 1/√2 и i/√2, так что