(16.24)
или, если вам больше нравится,
(16.25)
(где δm,m' равно единице при m'=m, и нулю в прочих случаях).
При поворотах вокруг любой другой оси возникает перемешивание различных m-состояний. Можно было бы, конечно, попытаться подсчитать матричные элементы для произвольных поворотов, описываемых углами Эйлера β,α и γ. Но будет легче, если мы вспомним, что самый общий такой поворот может быть составлен из трех поворотов Rz(γ), Ry(α), Rz(β); так что если мы знаем матричные элементы для поворотов вокруг оси y, то уже располагаем всем необходимым.
Как же нам найти матрицу поворота для поворота частицы со спином j на угол θ вокруг оси у? Опираясь на основные законы (и на то, что уже было), это сделать нелегко. Мы так поступали со спином 1/2: вывели все, что нужно, пользуясь довольно сложными соображениями симметрии. Для спина 1 мы это проделали уже иначе: рассмотрели частный случай, когда система со спином 1 складывается из двух систем со спином 1/2. Если вы последуете за нами и признаете правильным тот факт, что в общем случае ответы зависят только от спина j, а не от того, как скреплены между собой разные части системы со спином j, то мы сможем обобщить рассуждения для спина 1 на произвольный спин. Мы сможем, например, соорудить искусственную систему со спином 3/2 из трех объектов со спином 1/2. Мы сможем даже избежать всяких усложнений, вообразив, что все они суть различные частицы — скажем, протон, электрон и мюон. Преобразуя каждый объект со спином 1/2, мы увидим, что происходит со всей системой — надо только вспомнить, что для комбинированного состояния все амплитуды перемножаются. Давайте посмотрим, как все это проходит.
Допустим, мы расположили все три объекта со спином 1/2 спинами вверх; обозначим такое состояние |+++>. Если мы взглянем на него из системы координат, повернутой относительно оси z на угол φ, то каждый плюс останется плюсом, но умножится на еiφ/2. Таких множителей у нас тройка, так что
(16.26)
Ясно, что состояние |+++> — это как раз то, что мы называем состоянием m=+3/2, или состоянием |3/2, +3/2>.
Если мы затем повернем эту систему вокруг оси у, то у каждого из объектов со спином 1/2 появится некоторая амплитуда стать плюсом или стать минусом, так что вся система станет теперь смесью восьми возможных комбинаций |+++>, |++->, |+-+>, |-++>, |+-->, |-+->, |--+> или |--->. Ясно, однако, что их можно разбить на четыре группы, чтобы каждая соответствовала своему значению m. Прежде всего мы имеем |+++>, для которого m=3/2. Затем имеется тройка состояний |++->, |+-+> и |-++> — каждое с двумя плюсами и одним минусом. Поскольку каждый из объектов со спином 1/2 имеет равные шансы стать после поворота минусом, то каждая из этих трех комбинаций должна войти на равных паях. Поэтому возьмем комбинацию
(16.27)
где множитель 1/√3 поставлен для нормировки. Если мы повернем это состояние вокруг оси z, то получим множитель eiφ/2 для каждого плюса и e-iφ/2 для каждого минуса. Каждое слагаемое в (16.27) умножится на eiφ/2, и общий множитель еiφ/2 мы вынесем за скобки. Такое состояние соответствует нашему представлению о состоянии с m=+1/2; мы приходим к выводу, что
(16.8)
Точно так же можно написать
(16.29)
что соответствует состоянию с m=-1/2. Заметьте, что мы берем только симметричные сочетания, у нас нет комбинаций, куда входят слагаемые со знаком минус. Они отвечали бы состояниям с таким же m, но с иным j. Это аналогично случаю спина 1, где (1/√2){|+->+|-+>} было состоянием |1,0>, а (1/√2){|+->-|-+>} было состоянием |0,0>. Наконец, мы имеем