Выбрать главу

Перепишем сперва результаты гл. 10 для атома водорода в форме, которая позволит распространить их на более общий случай. Мы начали с двух частиц, которые теперь обозначим так: частица а (электрон) и частица b (протон). Спин частицы а был равен ja (=1/2), а z-компонента момента количества движения mа могла принимать одно из нескольких значений (на самом деле два, а именно mа=+1/2 или mа=-1/2). Точно так же спиновое состояние частицы b описывалось ее спином jb и z-компонентой момента количества движения mb. Из всего этого можно было составить несколько комбинаций спиновых состояний двух частиц. Например, из частицы а с mа=1/2 и частицы b с mb=-1/2 можно было образовать состояние |а, +1/2; b, -1/2>. Вообще, объединенные состояния образовывали систему, у которой «спин системы», или «полный спин», или «полный момент количества движения» J мог быть равен либо единице, либо нулю, а z-компонента момента количества движения М могла равняться +1, 0 или -1 при J=1 и нулю при J=0. На этом новом языке формулы (10.41) и (10.42) можно переписать так, как показано в табл. 16.3.

Таблица 16.3. СОСТАВЛЕНИЕ МОМЕНТОВ КОЛИЧЕСТВА ДВИЖЕНИЯ ДВУХ ЧАСТИЦ СО СПИНОМ 1/2

Левый столбец таблицы описывает составное состояние через его полный момент количества движения J и z-компоненту М. Правый столбец показывает, как составляются эти состояния из значений m двух частиц а и b.

Мы хотим обобщить этот результат на состояния, составленные из двух объектов а и b с произвольными спинами jа и jb. Начнем с разбора примера, когда jа=1/2 и jb=1, а именно с атома дейтерия, в котором частица а — это электрон е, а частица b — ядро, т. е. дейтрон d. Тогда ja=je=1/2. Дейтрон образован из одного протона и одного нейтрона в состоянии с полным спином 1, так что jb=jd=1. Мы хотим рассмотреть сверхтонкие состояния дейтерия, как мы сделали это для водорода. Поскольку у дейтрона может быть три состояния, mb=md=+1, 0, -1, а у электрона — два, mа=mе=+1/2, -1/2, то всего имеется шесть возможных состояний, а именно (используется обозначение |е, me; d, md>):

(16.42)

Обратите внимание, что мы разверстали состояния согласно значениям суммы me и md в порядке ее убывания.

Спросим теперь: что случится с этими состояниями, если спроецировать их в другую систему координат? Если эту новую систему просто повернуть вокруг оси z на угол φ, то состояние |е, me; d, md> умножается на

(16.43)

(Состояние можно считать произведением |е, mе>|d, md>, и каждый вектор состояния независимо привнесет свой собственный экспоненциальный множитель.) Множитель (16.43) имеет форму еiMφ, поэтому z-компонента момента количества движения у состояния |е, mе; d, md> окажется равной

(16.44)

Иначе говоря, z-компонента полного момента количества движения есть сумма z-компонент моментов количества движения отдельных частей.

Значит, в перечне состояний (16.42) верхнее состояние имеет М=+3/2, два следующих М=+1/2, затем два М=-1/2 и последнее состояние М=-3/2. Мы сразу же видим, что одной из возможностей для спина J объединенного состояния (для полного момента количества движения) должно быть 3/2, это потребует четырех состояний с М=+3/2, +1/2, -1/2 и -3/2. На М=+3/2 есть только один кандидат, и мы сразу видим, что