(4.36)
Мы хотели бы напоследок подытожить результаты этой главы в форме, которая окажется полезной для нашей дальнейшей работы. Во-первых, напомним, что наш основной результат (4.35) может быть записан в других обозначениях. Заметьте, что (4.35)— это то же самое, что и (4.4) Иначе говоря, в (4.35) коэффициенты при С+=<+S|ψ> и C'-=<-S|ψ> суть как раз амплитуды <jT|iS> в (4.4), амплитуды того, что частица в состоянии i по отношению к S окажется в состоянии j по отношению к Т (когда ориентация Т по отношению к S дается углами α, β и γ). Мы их также называли RTSji в выражении (4.6). (Чего-чего, а обозначений у нас хватало!) Например, RTS-+=<-T|+S> — это коэффициент при С+ в формуле для С-, а именно isin(α/2)exp[i(β-γ)/2]. Поэтому сводку наших результатов мы можем дать в виде табл. 4.1.
Таблица 4.1. АМПЛИТУДЫ <jT|iS> ДЛЯ ПОВОРОТА, ОПРЕДЕЛЯЕМОГО УГЛАМИ ЭЙЛЕРА α, β, γ (ФИГ. 4.9)
Было бы удобно иметь эти амплитуды расписанными для некоторых особо важных случаев. Пусть Rz(φ) — поворот на угол φ вокруг оси z. Так же можно обозначить и соответствующую матрицу поворота (опуская молчаливо подразумеваемые индексы i и j). В том же смысле Rx(φ) и Ry(φ) будут обозначать повороты на угол φ вокруг оси х и оси у.
В табл. 4.2 мы приводим матрицы — таблицы амплитуд <jT|iS>, которые проецируют амплитуды из системы S в систему Т, где Т получается из S указанным поворотом.
Таблица 4.2. АМПЛИТУДЫ <jT|iS> ДЛЯ ПОВОРОТА R(φ) НА УГОЛ φ ВОКРУГ ОДНОЙ ИЗ ОСЕЙ Rя(φ)
Глава 5 ЗАВИСИМОСТЬ АМПЛИТУД ОТ ВРЕМЕНИ
Повторить: гл. 17 (вып. 2) «Пространство-время»; гл. 48 (вып. 4) «Биения»
§ 1. Покоящиеся атомы; стационарные состояния
Мы хотим теперь немного рассказать о том, как ведут себя амплитуды вероятности во времени. Мы говорим «немного», потому что на самом деле поведение во времени с необходимостью включает в себя и поведение в пространстве. Значит, пожелав описать поведение со всей корректностью и детальностью, мы немедленно очутимся в весьма сложном положении. Перед нами возникает наша всегдашняя трудность — то ли изучать нечто строго логически, но абсолютно абстрактно, то ли не думать о строгости, а давать какое-то представление об истинном положении вещей, откладывая более тщательное исследование на позже. Сейчас, говоря о зависимости амплитуд от энергии, мы намерены избрать второй способ. Будет высказан ряд утверждений. При этом мы не будем стремиться к строгости, а просто расскажем вам о том, что было обнаружено, чтобы вы смогли почувствовать, как ведут себя амплитуды во времени. По мере хода нашего изложения точность описания будет возрастать, так что, пожалуйста, не нервничайте, видя, как фокусник будет извлекать откуда-то из воздуха разные вещи. Они и впрямь берутся из чего-то неосязаемого — из духа эксперимента и из воображения многих людей. Но проходить все стадии исторического развития предмета — дело очень долгое, кое-что придется просто пропустить. Можно было бы погрузиться в абстракции и все строго выводить (но вы вряд ли бы это поняли) или пройти через множество экспериментов, подтверждая ими каждое свое утверждение. Мы выберем что-то среднее.
Одиночный электрон в пустом пространстве может при некоторых условиях обладать вполне определенной энергией. Например, если он покоится (т. е. не обладает ни перемещательным движением, ни импульсом, ни кинетической энергией), то у него есть энергия покоя. Объект посложнее, например атом, тоже может, покоясь, обладать определенной энергией, но он может оказаться и внутренне возбужденным — возбужденным до другого уровня энергии. (Механизм этого мы опишем позже.) Часто мы вправе считать, что атом в возбужденном состоянии обладает определенной энергией; впрочем, на самом деле это верно только приближенно. Атом не остается возбужденным навечно, потому что он всегда стремится разрядить свою энергию, взаимодействуя с электромагнитным полем. Так что всегда есть некоторая амплитуда того, что возникнет новое состояние — с атомом в низшем состоянии возбуждения и электромагнитным полем в высшем. Полная энергия системы и до, и после — одна и та же, но энергия атома уменьшается. Так что не очень точно говорить, что у возбужденного атома есть определенная энергия; но часто так говорить удобно и не очень неправильно.