Если частица движется в направлении х и вступает в область, где имеется потенциал, изменяющийся вдоль y, то частица получит поперечное ускорение от силы F=-∂V/∂y. Если сила присутствует только в ограниченной области шириной w, то она будет действовать только в течение времени w/v. Частица получит поперечный импульс
Тогда угол отклонения δθ будет равен
где р — начальный импульс. Подставляя вместо F число -∂V/∂y, получаем
(5.26)
Теперь нам предстоит выяснить, удастся ли получить этот результат с помощью представления о том, что волны подчиняются уравнению (5.20). Мы рассмотрим то же самое явление квантовомеханически, предполагая, что все масштабы в нем намного превосходят длины волн наших амплитуд вероятности. В любой маленькой области можно считать, что амплитуда меняется как
(5.27)
В состоянии ли мы увидеть, как отсюда получится отклонение частиц, когда у V будет поперечный градиент? На фиг. 5.8 мы прикинули, как будут выглядеть волны амплитуды вероятности.
Фиг. 5.8. Амплитуда вероятности в области с поперечным градиентом потенциала.
Мы начертили ряд «узлов волн», которые вы можете считать, скажем, поверхностями, где фаза амплитуды равна нулю. В любой небольшой области длина волны (расстояние между соседними узлами) равна
где р связано с V формулой
(5.28)
В области, где V больше, там р меньше, а волны длиннее. Поэтому направление линий узлов волн постепенно меняется, как показано на рисунке.
Чтобы найти изменение наклона линий узлов волн, заметим, что на двух путях а и b имеется разность потенциалов ΔV=(∂V/∂y)D, а значит, и разница Δр между импульсами. Эту разность можно получить из (5.28):
(5.29)
Волновое число p/ℏ поэтому тоже на разных путях различно, что означает, что фазы растут вдоль них с разной скоростью. Разница в скорости роста фазы есть Δk=Δр/ℏ, и накопленная на всем пути w разность фаз будет равна
(5.30)
Это число показывает, на сколько к моменту выхода из полосы фаза вдоль пути b «опережает» фазу вдоль пути а. Но на выходе из полосы такое опережение фаз отвечает опережению узла волны на величину
или
(5.31)
Обращаясь к фиг. 5.8, мы видим, что новый фронт волны повернется на угол δθ, даваемый формулой
(5.32)
так что мы имеем
(5.33)
А это совпадает с (5.26), если заменить р/М на v, а ΔV/D на ∂V/∂y.
Результат, который мы только что получили, верен лишь, когда потенциал меняется медленно и плавно — в так называемом классическом пределе. Мы показали, что при этих условиях получим те же движения частиц, что получились бы и из F=ma, если предположить, что потенциал дает вклад в фазу амплитуды вероятности, равный Vt/ℏ. В классическом пределе квантовая механика оказывается в согласии с ньютоновской механикой.
§ 5. «Прецессия» частицы со спином 1/2
Заметьте, что мы не предполагали, что потенциальная энергия у нас какая-то особая, это просто энергия, производная от которой дает силу. Например, в опыте Штерна—Герлаха энергия имела вид U=-μ·B; отсюда при наличии у В пространственной вариации и получалась сила. Если бы нам нужно было квантовомеханическое описание опыта, мы должны были бы сказать, что у частиц в одном пучке энергия меняется в одну сторону, а в другом пучке — в обратную сторону. (Магнитную энергию U можно было бы вставить либо в потенциальную энергию V, либо во «внутреннюю» энергию W; куда именно, совершенно неважно.) Из-за вариаций энергии волны преломляются, пучки искривляются вверх или вниз. (Мы теперь знаем, что квантовая механика предсказывает то же самое искривление, которое следует и из расчета по классической механике.)
Из зависимости амплитуды от потенциальной энергии также следует, что у частицы, сидящей в однородном магнитном поле, направленном по оси z, амплитуда вероятности обязана меняться во времени по закону