Фиг. 7.6. Уровни энергии «трехуровневого» мазера.
Система поглощает излучение (скажем, свет) с энергией ℏω1 и переходит от низшего уровня энергии ЕII к какому-то более высокому уровню Е', а затем быстро испускает фотоны с энергией ℏω2 и переходит в состояние |I> с энергией ЕI. У состояния |I> большое время жизни, так что его населенность может возрасти; создаются условия, благоприятствующие работе мазера между состояниями |I> и |II>. Хотя такой прибор называют «трехуровневым» мазером, но сама мазерная процедура на самом деле происходит так же, как и у описанной нами двухуровневой системы.
Лазер — это всего-навсего мазер, действующий на световых частотах. «Полость» лазера обычно состоит попросту из двух зеркал, между которыми генерируются стоячие волны.
§ 5. Переходы вне резонанса
Наконец, хотелось бы выяснить, как изменяются состояния в условиях, когда частота полости, хотя и близка к ω0, но не совпадает с ней. Эту задачу можно было бы решить точно, но мы не будем пытаться это делать, а обратимся к важному случаю малого электрического поля и малого промежутка времени Т, так что μℰ0T/ℏ много меньше единицы. Тогда даже в случае уже изученного нами идеального резонанса вероятность перехода очень мала. Будем исходить опять из того, что γI=1 и γII=0. Тогда мы вправе ожидать, что в течение всего времени Т наша величина γI останется близкой к единице, а γII будет малой по сравнению с единицей, и задача облегчается. Из второго уравнения (7.45) мы можем подсчитать γII, принимая γI равной единице и интегрируя от t=0 до t=T. Получается
(7.51)
Это та величина γII, которая стоит в (7.40), и она дает амплитуду того, что переход из состояния |I> в состояние |II> произойдет за время Т. Вероятность Р(I→II) такого перехода равна |γII|2, или
(7.52)
Интересно начертить эту вероятность при фиксированном времени T как функцию частоты полости, чтобы посмотреть, насколько чувствительна она к частотам близ резонансной частоты ω0. Кривая Р(I→II) показана на фиг. 7.7.
Фиг. 7.7. Вероятность перехода для молекулы аммиака как функция частоты.
(Вертикальная шкала была подогнана так, чтобы в пике была единица, для этого разделили на величину вероятности при ω=ω0.) С подобными кривыми мы встречались в теории дифракции, так что они должны быть вам знакомы. Кривая довольно резко падает до нуля при (ω-ω0)=2π/T и никогда при больших отклонениях частоты снова не достигает заметной величины. Почти вся площадь под кривой лежит в пределах ±π/T. Можно показать [с помощью формулы -∞∫∞(sin2x/x2)dx=π], что площадь под кривой равна 2π/T и совпадает с площадью выделенного штрихованной линией прямоугольника.
Посмотрим, что это дает для реального мазера. Возьмем разумное время пребывания молекулы аммиака в полости, скажем 1 мсек. Тогда для f0=24000 Мгц можно подсчитать, что вероятность падает до нуля при отклонениях (f-f0)/f0=1/f0T, т. е. порядка 5·10-8. Очевидно, что для заметных вероятностей перехода частоты должны очень точно совпадать с ω0. Этот эффект является основой той большой точности, которой можно достичь в «атомных» часах, работающих на принципе мазера.
§ 6. Поглощение света
Наше изложение применимо и к более общему случаю, чем аммиачный мазер. Мы ведь изучали поведение молекулы под влиянием электрического поля независимо от того, заключено оно в полость или нет. Просто можно было направить пучок «света» — микроволновой частоты — на молекулу и искать вероятность испускания или поглощения. Наши уравнения ничуть не хуже применимы и к этому случаю, но только лучше переписать их на языке интенсивности излучения, а не электрического поля. Если определить интенсивность ℐ как средний поток энергии через единицу площади в секунду, то из гл. 27 (вып. 6) следует