Выбрать главу

принимает две функции одного аргумента и направляет выход второй функции на вход первой:

( λf. ( λg. ( λx. ( f ( gx)))))

Переменные f и g – это функции, которые участвуют в композиции, а x это вход результирующей функ-

ции. Уже в таком простом выражении у нас пять скобок на конце. Давайте введём несколько соглашений,

которые облегчат написание термов:

Пишем

Подразумеваем

Опустим внешние скобки:

λx. x

( λx. x)

В применении группируем скобки

f ghx

(( f g) h) x

влево:

Ф функциях группируем скобки

λx. λy. x

( λx. ( λy. x))

вправо:

Пишем функции нескольких

λxy. x

( λx. ( λy. x))

аргументов с одной лямбдой:

С этими соглашениями мы можем переписать терм для композиции так:

λf gx. f ( gx)

Сравните с выражением на языке Haskelclass="underline"

\f g x -> f (g x)

Выражения очень похожи. Haskell иногда называют засахаренной версией лямбда исчисления. В лямбда-

исчислении мы не будем ставить пробелы для применения аргументов к функции. Мы будем считать, что

все имена однобуквенные. При этом переменные мы будем писать с маленькой буквы, а составные термы с

большой.

Определим ещё несколько функций. Например так выглядит функция flip:

λf xy. f yx

Или можно записать в более явном виде, выделим функцию двух аргументов:

λf. λxy. f yx

Определим функцию on, она принимает функцию двух аргументов и функцию одного аргумента f, а

возвращает функцию двух аргументов, в которой к аргументам сначала применяется функция f, а затем они

передаются в функцию :

λ ∗ f. λx. ∗ ( f x)( f x)

В лямбда-исчислении есть только префиксное применение поэтому мы написали ( fx)( fx) вместо при-

вычного ( fx) ( fx). Здесь операция это не только умножение, а любая бинарная функция.

Лямбда исчисление без типов | 217

Абстракция

Функции в лямбда-исчислении называют абстракциями. Мы берём терм M и параметризуем его по пе-

ременной x в выражении λx.M. При этом если в терме M встречается переменная x, то она становится свя-

занной. Например в терме λx.λy.x$ Переменная x является связанной, но в терме λy.x, она уже не связана.

Такие переменные называют свободными. Множество связанных переменных терма M мы будем обозначать

BV ( M )$ от англ. bound variables, а множество свободных переменных мы будем обозначать F V ( M ) от англ.

free variables.

На интуитивном уровне процесс абстракции заключается в том, что мы смотрим на несколько частных

случаев и видим в них что-то общее. Это общее мы выделяем в функцию, которая параметризована частно-

стями. Например мы видим выражения:

λx. + xx,

λx. ∗ xx

И в том и в другом у нас есть функция двух аргументов + или и мы делаем из неё функцию одного

аргумента. Мы можем абстрагировать (параметризовать) это поведение в такую функцию:

λb. λx. bxx

На Haskell мы бы записали это так:

\b -> \x -> b x x

Редукция. Вычисление термов

Процесс вычисления термов заключается в подстановке аргументов во все функции. Выражения вида:

( λx. M ) N

Заменяются на

M [ x = N ]

Эта запись означает, что в терме M все вхождения x заменяются на терм N. Этот процесс называется

редукцией терма. А выражения вида ( λx. M) N называются редексами. Проведём к примеру редукцию терма:

( λb. λx. bxx)

Для этого нам нужно в терме ( λx. bxx) заменить все вхождения переменной b на переменную . После

этого мы получим терм:

λx. ∗ xx

В этом терме нет редексов. Это означает, что он вычислен или находится в нормальной форме.

α-преобразование

При подстановке необходимо следить за тем, чтобы у нас не появлялись лишние связывания переменных.

Например рассмотрим такой редекс: