Выбрать главу

помощью композиции функций, тождественная стрелка, это тождественная функция.

• В категории Hask объектами являются типы Haskell, а стрелками – функции, стрелки соединяются с

помощью композиции функций, тождественная стрелка, это тождественная функция.

• Ориентированный граф может определять категорию. Объекты – это вершины, а стрелки это связанные

пути в графе. Соединение стрелок – это соединение путей, а тождественная стрелка, это путь в котором

нет ни одного ребра.

228 | Глава 15: Теория категорий

• Упорядоченное множество, в котором есть операция сравнения на больше либо равно задаёт катего-

рию. Объекты – это объекты множества. А стрелки это пары объектов таких, что первый объект меньше

второго. Первый объект в паре считается начальным, а второй конечным.

( a, b) : a → b

если a ≤ b

Стрелки соединяются так:

( a, b) ; ( b, c) = ( a, c)

Тождественная стрелка состоит из двух одинаковых объектов:

ida = ( a, a)

Можно убедиться в том, что это действительно категория. Для этого необходимо проверить аксиомы

ассоциативности и тождества. Важно проверить, что те стрелки, которые получаются в результате ком-

позиции, не нарушали бы основного свойства данной структуры, то есть тот факт, что второй элемент

пары всегда больше либо равен первого элемента пары.

Отметим, что бывают такие области, в которых стрелки или преобразования с одинаковыми именами

могут соединять несколько разных объектов. Например в Haskell есть классы, поэтому функции с одними

и теми же именами могут соединять разные объекты. Если все условия категории для объектов и стрелок

выполнены, кроме этого, то такую систему называют прекатегорией (pre-category). Из любой прекатегории

не сложно сделать категорию, если включить имена объектов в имя стрелки. Тогда у каждой стрелки будут

только одна пара объектов, которые она соединяет.

15.2 Функтор

Вспомним определение класса Functor:

class Functor f where

fmap :: (a -> b) -> (f a -> f b)

В этом определении участвуют тип f и метод fmap. Можно сказать, что тип f переводит произвольные

типы a в специальные типы f a. В этом смысле тип f является функцией, которая определена на типах. Метод

fmap переводит функции общего типа a -> b в специальные функции f a -> f b.

При этом должны выполняться свойства:

fmap id

= id

fmap (f . g) = fmap f . fmap g

Теперь вспомним о категории Hask. В этой категории объектами являются типы, а стрелками функции.

Функтор f отображает объекты и стрелки категории Hask в объекты и стрелки f Hask. При этом оказывается,

что за счёт свойств функтора f Hask образует категорию.

• Объекты – это типы f a.

• Стрелки – это функции fmap f.

• Композиция стрелок это просто композиция функций.

• Тождественная стрелка это fmap id.

Проверим аксиомы:

fmap f . fmap id = fmap f . id = fmap f

fmap id . fmap f = id . fmap f = fmap f

fmap f . (fmap g . fmap h)

=

fmap f . fmap (g . h)

=

fmap (f . (g . h))

=

fmap ((f . g) . h)

=

fmap (f . g) . fmap h

=

(fmap f . fmap g) . fmap h

Функтор | 229

Видно, что аксиомы выполнены, так функтор f порождает категорию f Hask. Интересно, что поскольку

Hask содержит все типы, то она содержит и типы f Hask. Получается, что мы построили категорию внутри

категории. Это можно пояснить на примере списков. Тип [] погружает любой тип в список, а функцию для

любого типа можно превратить в функцию, которая работает на списках с помощью метода fmap. При этом с

помощью класса Functor мы проецируем все типы и все функции в мир списков [a]. Но сам этот мир списков

содержится в категории Hask.

С помощью функторов мы строим внутри одной категории другую категорию, при этом внутренняя ка-

тегория обладает некоторой структурой. Так если раньше у нас были только произвольные типы a и произ-

вольные функции a -> b, то теперь все объекты имеют тип [a] и все функции имеют тип [a] -> [b]. Также и

функтор Maybe переводит произвольное значение, в значение, которое обладает определённой структурой. В