Выбрать главу

inr ; out( f, g) = g

Для любых функций f и g. Графически это свойство можно изобразить так:

A

inl

A + B

inr

B

out

f

g

C

Итак суммой двух объектов A и B называется объект A + B и две стрелки inl : A → A + B и inr : B →

A + B такие, что для любых двух стрелок f : A → C и g : B → C определена одна и только одна стрелка

h : A + B → C такая, что выполнены свойства:

inl ; h = f

inr ; h = g

В этом определении объект A + B вместе со стрелками inl и inr, определяет функцию, которая по

некоторому объекту C и двум стрелкам f и g строит стрелку h, которая ведёт из объекта A + B в объект

C. Этот процесс определения стрелки по объекту напоминает определение начального элемента. Построим

специальную категорию, в которой объект A+ B будет начальным. Тогда функция out будет катаморфизмом.

Функция out принимает две стрелки и возвращает третью. Посмотрим на типы:

f : A → C

inl : A → A + B

g : B → C

inr : B → A + B

Каждая из пар стрелок в столбцах указывают на один и тот же объект, а начинаются они из двух разных

объектов A и B. Определим категорию, в которой объектами являются пары стрелок ( a 1 , a 2), которые на-

чинаются из объектов A и B и заканчиваются в некотором общем объекте D. Эту категорию ещё называют

клином. Стрелками в этой категории будут такие стрелки f : ( d 1 , d 2) ( e 1 , e 2), что стрелки в следующей

диаграмме коммутируют (не важно по какому пути идти из двух разных точек).

A

B

d

e

1

2

e 1

d 2

D

E

f

Композиция стрелок – это обычная композиция в исходной категории, в которой определены объекты A

и B, а тождественная стрелка для каждого объекта, это тождественная стрелка для того объекта, в котором

сходятся обе стрелки. Можно проверить, что это действительно категория.

Если в этой категории есть начальный объект, то мы будем называть его суммой объектов A и B. Две

стрелки, которые содержит этот объект мы будем называть inl и inr, а общий объект в котором эти стрелки

сходятся будем называть A + B. Теперь если мы выпишем определение для начального объекта, но вме-

сто произвольных стрелок и объектов подставим наш конкретный случай, то мы получим как раз исходное

определение суммы.

Начальный объект ( inl : A → A + B, inr : B → A + B) ставит в соответствие любому объекту

( f : A → C, g : B → C) стрелку h : A + B → C такую, что выполняются свойства:

236 | Глава 15: Теория категорий

A

inl

A + B

inr

B

h

f

g

C

А как на счёт произведения? Оказывается, что произведение является дуальным понятием по отношению

к сумме. Его иногда называют косуммой, или сумму называют копроизведением. Дуализируем категорию,

которую мы строили для суммы.

У нас есть категория A и в ней выделено два объекта A и B. Объектами новой категории будут пары

стрелок ( a 1 , a 2), которые начинаются в общем объекте C а заканчиваются в объектах A и B. Стрелками в

этой категории будут стрелки исходной категории h : ( e 1 , e 2) ( d 1 , d 2) такие что следующая диаграмма

коммутирует: