Выбрать главу

(6)

Выразив из первых уравнений ail и подставив результат в последнее выражение найдем λ, а затем найдем координаты ядра:

(7)

Рис. 8. Решение задачи методом динамических ядер

Подводя итог, можно сказать, что новое положение ядра есть среднее арифметическое объектов данного класса, нормированное на единичную длину.

На рис. 8. Приведено решение второго примера методом обучения сети Кохонена с уменьшением скорости с 0,5, а на рис. 9 — решение той же задачи методом динамических ядер. В качестве первоначального значения ядер выбраны два первых объекта.

Рис. 9. Решение задачи с помощью обучения сети Кохонена со снижением скорости обучения с 0,5. График суммарного изменения разностей координат ядер.

Пространственная модель

Эта модель описывает наиболее естественную классификацию. Нейрон пространственной сети Кохонена приведен в главе «Описание нейронных сетей». Ядра являются точками в пространстве объектов. Мера близости — квадрат обычного евклидова расстояния. Обучение сети Кохонена ведется непосредственно по формуле (2). Задача (4) имеет вид:

(8)

Дифференцируя (8) по каждой координате ядра и приравнивая результат к нулю получаем следующую систему уравнений:

Преобразуя полученное выражение получаем

, (9)

где |Ki| — мощность i-го класса (число объектов в классе). Таким образом, оптимальное ядро класса — среднее арифметическое всех объектов класса.

Модель линейных зависимостей

Это первая модель, которая может быть решена методом динамических ядер, но не может быть получена с помощью обучения сети Кохонена, поскольку ядра не являются точками в пространстве объектов. Ядрами в данной модели являются прямые, а мерой близости — квадрат расстояния от точки (объекта) до прямой. Прямая в n—мерном пространстве задается парой векторов: ai = (bi, ci). Первый из векторов задает смещение прямой от начала координат, а второй является направляющим вектором прямой. Точки прямой задаются формулой x = b + tc, где t — параметр, пробегающий значения от минус бесконечности до плюс бесконечности. t имеет смысл длины проекции вектора x-b на вектор c. Сама проекция равна tc. При положительном значении вектор проекции сонаправлен с вектором c, при отрицательном — противоположно направлен. При условии, что длина вектора c равна единице, проекция вычисляется как скалярное произведение (x–b,c). В противном случае скалярное произведение необходимо разделить на квадрат длины c. Мера близости вектора (точки) x определяется как квадрат длины разности вектора x и его проекции на прямую. При решении задачи (4) необходимо найти минимум следующей функции:

Продифференцируем целевую функцию по неизвестным tq, cir, bir и приравняем результаты к нулю.

(10)

Выразим из последнего уравнения в (10) bir:

(11)

В качестве bi можно выбрать любую точку прямой. Отметим, что для любого набора векторов xij и любой прямой с ненулевым направляющим вектором ci на прямой найдется такая точка bi, что сумма проекций всех точек на прямую x = b + tc будет равна нулю. Выберем в качестве bi такую точку. Второе слагаемое в правой части (11) является r-й координатой суммы проекций всех точек на искомую прямую и, в силу выбора точки bi равно нулю. Тогда получаем формулу для определения bi:

(12)

Из первых двух уравнений (10) получаем формулы для определения остальных неизвестных:

(13)

Поиск решения задачи (4) для данного вида классификации осуществляется по следующему алгоритму:

1. Вычисляем bi по формуле (12).

2. Вычисляем t по первой формуле в (13).

3. Вычисляем ci по второй формуле в (13).

4. Если изменение значения ci превышает заданную точность, то переходим к шагу 2, в противном случае вычисления закончены.

Определение числа классов

До этого момента вопрос об определении числа классов не рассматривался. Предполагалось, что число классов задано исходя из каких-либо дополнительных соображений. Однако достаточно часто дополнительных соображений нет. В этом случае число классов определяется экспериментально. Но простой перебор различных чисел классов часто неэффективен. В данном разделе будет рассмотрен ряд методов, позволяющих определить «реальное» число классов.