Выбрать главу
называется константой Липшица. Исходя из этих соображения можно дать следующее определение сложности задачи.

Сложность аппроксимации таблично заданной функцииf, которая в точках xi принимает значения fi, задается выборочной оценкой константы Липшица, вычисляемой по следующей формуле:

(2)

Оценка (2) является оценкой константы Липшица аппроксимируемой функции снизу.

Для того, чтобы оценить способность сети заданной конфигурации решить задачу, необходимо оценить константу Липшица сети и сравнить ее с выборочной оценкой (2). Константа Липшица сети вычисляется по следующей формуле:

(3)

В формулах (2) и (3) можно использовать произвольные нормы. Однако для нейронных сетей наиболее удобной является евклидова норма. Далее везде используется евклидова норма.

В следующем разделе описан способ вычисления оценки константы Липшица сети (3) сверху. Очевидно, что в случае  сеть принципиально не способна решить задачу аппроксимации функции f.

Оценка константы Липшица сети

Оценку константы Липшица сети будем строить в соответствии с принципом иерархического устройства сети, описанным в главе «Описание нейронных сетей». При этом потребуются следующие правила.

Для композиции функций f∘g=f(g(x)) константа Липшица оценивается как произведение констант Липшица:

Λf∘g ≤  ΛfΛg (4)

Для вектор-функции f=(f1, f2, … fn) константа Липшица равна:

(5)

Способ вычисления константы Липшица

Для непрерывных функций константа Липшица является максимумом производной в направлении r=(r1, …, rn) по всем точкам и всем направлениям. При этом вектор направления имеет единичную длину:

Напомним формулу производной функции f(x1, …, xn) в направлении r:

(6)

Синапс

Обозначим входной сигнал синапса через x, а синаптический вес через α. Тогда выходной сигнал синапса равен αx. Поскольку синапс является функцией одной переменной, константа Липшица равна максимуму модуля производной — модулю синаптического веса:

Λs=|α| (7)

Умножитель

Обозначим входные сигналы умножителя через x1, x2 Тогда выходной сигнал умножителя равен . Используя (6) получаем . Выражение r1x2+r2x1 является скалярным произведением векторов (r1, r2) и, учитывая единичную длину вектора r, достигает максимума, когда эти векторы сонаправлены. То есть при векторе

Используя это выражение, можно записать константу Липшица для умножителя:

(8)

Если входные сигналы умножителя принадлежат интервалу [a,b], то константа Липшица для умножителя может быть записана в следующем виде:

(9)

Точка ветвления

Поскольку в точке ветвления не происходит преобразования сигнала, то константа Липшица для нее равна единице.

Сумматор

Производная суммы по любому из слагаемых равна единице. В соответствии с (6) получаем:

(10)

поскольку максимум суммы при ограничении на сумму квадратов достигается при одинаковых слагаемых.

Нелинейный Паде преобразователь

Нелинейный Паде преобразователь или Паде элемент имеет два входных сигнала и один выходной. Обозначим входные сигналы через x1, x2. Используя (6) можно записать константу Липшица в следующем виде:

Знаменатель выражения под знаком модуля не зависит от направления, а числитель можно преобразовать так же, как и для умножителя. После преобразования получаем:

(11)

Нелинейный сигмоидный преобразователь

Нелинейный сигмоидный преобразователь, как и любой другой нелинейный преобразователь, имеющий один входной сигнал x, имеет константу Липшица равную максимуму модуля производной:

(12)

Адаптивный сумматор

Для адаптивного сумматора на n входов оценка константы Липшица, получаемая через представление его в виде суперпозиции слоя синапсов и простого сумматора, вычисляется следующим образом. Используя формулу (7) для синапсов и правило (5) для вектор-функции получаем следующую оценку константы Липшица слоя синапсов: