Выбрать главу

Производная оценки по i-му выходному сигналу равна

2. Кодирование номером канала. Максимальный интерпретатор. Пусть для рассматриваемого примера правильным ответом является k-ый класс. Тогда вектор выходных сигналов сети должен удовлетворять следующей системе неравенств: αk-e≥αi при i≠k. Оценкой решения сетью данного примера является расстояние от точки a в пространстве выходных сигналов до множества точек, удовлетворяющих этой системе неравенств. Для записи оценки, исключим из вектора выходных сигналов сигнал αk, а остальные сигналы отсортируем по убыванию. Обозначим величину αk-e через β0, а вектор отсортированных сигналов через β1≥β2≥…≥βN-1. Система неравенств в этом случае приобретает вид β0≥βi, при i>1. Множество точек удовлетворяющих этой системе неравенств обозначим через D. Очевидно, что если β0≥β1, то точка b принадлежит множеству D. Если β0<β1, то найдем проекцию точки b на гиперплоскость β0=β1. Эта точка имеет координаты

Если , то точка β¹ принадлежит множеству D. Если нет, то точку b нужно проектировать на гиперплоскость β0=β1=β2. Найдем эту точку. Ее координаты можно записать в следующем виде (b,b,b,β3,…,βN-1). Эта точка обладает тем свойством, что расстояние от нее до точки b минимально. Таким образом, для нахождения величины b достаточно взять производную от расстояния по b и приравнять ее к нулю:

Из этого уравнения находим b и записываем координаты точки β²:

Эта процедура продолжается дальше, до тех пор, пока при некотором l не выполнится неравенство

или пока l не окажется равной N–1. Оценкой является расстояние от точки b до точки

Она равна следующей величине

Производная оценки по выходному сигналу βm равна

Для перехода к производным по исходным выходным сигналам αi необходимо обратить сделанные на первом этапе вычисления оценки преобразования.

3. Двоичный интерпретатор. Оценка для двоичного интерпретатора строится точно также как и для знакового интерпретатора при кодировании номером канала. Пусть правильным ответом является k-ый класс, тогда обозначим через K множество номеров сигналов, которым в двоичном представлении k соответствуют единицы. При уровне надежности оценка задается формулой:

Производная оценки по i-му выходному сигналу равна:

4. Порядковый интерпретатор. Для построения оценки по порядковому интерпретатору необходимо предварительно переставить компоненты вектора a в соответствии с подстановкой, кодирующей правильный ответ. Обозначим полученный в результате вектор через βº. Множество точек, удовлетворяющих условию задачи, описывается системой уравнений , где e — уровень надежности. Обозначим это множество через D. Оценка задается расстоянием от точки b до проекции этой точки на множество D. Опишем процедуру вычисления проекции.

1. Просмотрев координаты точки βº, отметим те номера координат, для которых нарушается неравенство βºi+e≤βºi+1.

2. Множество отмеченных координат либо состоит из одной последовательности последовательных номеров i,i+1,…,i+l, или из нескольких таких последовательностей. Найдем точку β¹, которая являлась бы проекцией точки βº на гиперплоскость, определяемую уравнениями β¹i+e≤β¹i+1, где i пробегает множество индексов отмеченных координат. Пусть множество отмеченных координат распадается на n последовательностей, каждая из которых имеет вид , где m — номер последовательности. Тогда точка β¹ имеет вид:

3. Точка β¹ является проекцией, и следовательно, расстояние от βº до β¹ должно быть минимальным. Это расстояние равно

Для нахождения минимума этой функции необходимо приравнять к нулю ее производные по γm. Получаем систему уравнений

Решая ее, находим

4. Если точка  удовлетворяет неравенствам, приведенным в первом пункте процедуры, то расстояние от нее до точки βº является оценкой. В противном случае, повторяем первый шаг процедуры, используя точку β¹ вместо βº; Объединяем полученный список отмеченных компонентов со списком, полученным при поиске предыдущей точки; находим точку β², повторяя все шаги процедуры, начиная со второго.

Отметим, что в ходе процедуры число отмеченных последовательностей соседних индексов не возрастает. Некоторые последовательности могут сливаться, но новые возникать не могут. После нахождения проекции можно записать оценку: