Выбрать главу

Или, скажем, такой вопрос: чему равна энтропия одной молекулы? Если считать, как мы это делали раньше, молекулу однородным шариком, не имеющим внутренней структуры, то любое ее состояние может быть реализовано одним-единственным способом и, следовательно, энтропия молекулы равна нулю. Так что же, второе начало термодинамики, или, даже проще, понятие энтропии, существует в мире вещей, состоящих из большого числа частиц, и не существует для самих этих частиц?

На самом деле это не так. Не только молекулы, но и элементарные частицы — электроны, протоны, нейтроны — подчиняются соотношению неопределенностей, и любое их состояние может осуществиться, вообще говоря, несколькими способами. Но согласитесь, что здесь уже нет столь простого и ясного обоснования необходимости возрастания энтропии, как для случая, когда все зайцы, то бишь молекулы, одинаковы. Поэтому пока ограничимся утверждением, что второе начало термодинамики, безусловно, справедливо в мире вещей, состоящих из одинаковых, неразличимых частиц. И не станем пророчить гибель миру, который мы познали далеко не до конца.

Третий важный вывод состоит в следующем. Существуют как бы два различных мира. Один — мир реальных вещей, таких, как электроны, протоны, нейтроны, атомные ядра, молекулы. Каждый такой объект обладает некоторым запасом энергии, некоторой скоростью, а вернее, количеством движения, которые можно определить с точностью до соотношения неопределенностей. Современная техника экспериментов не дает нам возможности проследить все события, происходящие с отдельной молекулой, но современный уровень знаний в большинстве случаев позволяет нам описать эти события.

Второй мир — это мир больших вещей: пятаков, зайцев, автомобилей. Мы наивно полагаем, что знаем об этих вещах многое, но на самом деле не можем даже разобраться, тот это пятак или другой. Важнее всего то, что величины, с помощью которых описывается поведение больших вещей,— это, как правило, средние величины. Например, скорость автомобиля — средняя скорость поступательного движения всех его молекул. Что самое замечательное? Скорость автомобиля — это мысленная величина; из всех частиц, составляющих автомобиль, нет ни одной, скорость которой в точности равнялась бы скорости автомобиля. То же самое справедливо для давления, температуры и других термодинамических величин. Вся классическая физика — это система соотношений между мысленными величинами. Ну а современная квантовая физика?

ГЛАВА 2

Движение

Каковы они, кванты?

Сейчас нам хочется обсудить одно часто бытующее мнение. Мнение о том, что к квантовой физике следует прибегать лишь при переходе в микромир — мир молекул, атомов и электронов, где все очень маленькое, а поведение больших вещей можно описывать, ограничиваясь законами классической физики.

На наш взгляд, это совершенно неправильно. Вы уже имели случай убедиться, что такой «большой» закон термодинамики, как уравнение Клапейрона, по существу, представляет собой просто другую форму записи соотношения неопределенностей Гейзенберга — соотношения чисто квантового. Будучи рассмотренным как следствие соотношения неопределенностей, уравнение Клапейрона сразу теряет свою таинственность, а сказанное остается справедливым независимо от того, рассматриваем мы одну молекулу или несколько кубических метров газа.

При допущении непрерывной делимости энергии, как это делается в классической физике, энтропия теряет смысл, а значит, рушится вся термодинамика. Нечто подобное произошло в конце XIX века. Не существует отдельно классической и отдельно квантовой физики. Существует единая физика, которая описывает мир исходя из основополагающих представлений о конечной делимости, конечной скорости света, законе сохранения энергии и других исходных положений.

Осталось ответить на последний вопрос из числа поставленных в этой главе. Почему постоянная Планка представляет собой такое неудобочитаемое число? Да только потому, что, задавая единицу измерения энергии, человек выбрал один килограмм, т. е. массу, которую он легко может поднять, ощущая при этом, что делает дело, и один метр, т. е. расстояние, несколько большее его шага. С тем же успехом за единицу расстояния можно было бы принять, например, длину прыжка оленя, а за единицу массы — массу одной хвоинки, которую тащит муравей. Ясно, что при этом изменились бы значения всех физических постоянных.

О силах

Возьмите концы нитки и потяните в разные стороны, дернули посильнее — нитка разорвалась. Что послужило причиной разрыва нити? Нитка плотно прилегает к пальцам, вы тянете ее с силой, и она, в свою очередь, тоже с силой (сила реакции) врезается в пальцы (если нитка достаточно крепкая, пальцы можно поранить, но этого мы от вас не требуем), сама нитка натягивается все сильнее и наконец разрывается.