Таким образом, условие равновесия рычага может быть выражено и так: «Произведения веса каждого груза на длину того плеча рычага, на котором он подвешен, должны быть равны».
При всей его важности закон рычага Архимеда не мог быть использован для анализа равновесия любого колеса механического ppm, работающего с твердыми или жидкими грузами. Дело в том, что для такого анализа нужно было уметь определять равновесие и для случая, когда сила веса груза направлена не под прямым углом к рычагу, как у Архимеда, а под любым углом — острым или тупым. Действительно, стоит посмотреть на рис. 1.3 или 1.6, чтобы увидеть, что сила тяжести направлена под самыми разными углами к соответствующим радиусам колеса. Выделим для примера два груза: один (В) расположен выше оси колеса, а другой (А) ниже (рис. 1.9, б). Как решить задачу в этом, более общем случае?
Леонардо нашел такое решение, он показал его на двух примерах (соответствующие рисунки из его рукописи показаны на рис. 1.10). Относящийся к левому рисунку текст предельно ясен: «Пусть AT — рычаг, вращающийся вокруг точки А. Груз О подвешен в точке Т. Сила А уравновешивает груз О. Проведем линии: АВ перпендикулярно ВО и АС перпендикулярно СТ. Я называю AT действительным рычагом, АВ и АС — «потенциальным рычагом». Существует пропорция N: О = АВ: АС».
Очевидно, что это соотношение может быть переписано так: О ∙ АВ = N ∙ АС. Другими словами, для равновесия ломаного рычага нужно, чтобы произведения сил на соответствующие «потенциальные рычаги» были равны. Эти «потенциальные рычаги» есть не что иное, как проекции рычага AT на соответствующие оси, перпендикулярные направлению сил, т.е., говоря посовременному, на «плечо силы». Условие равновесия состоит в равенстве статических моментов сил, т.е. произведений сил на проекции плечей рычага на оси, перпендикулярные направлению этих сил.
Аналогичное соотношение было выведено Леонардо для случая, показанного на правом рисунке. Здесь F: М = АС: AM. Из него тоже вытекает равенство моментов сил: F ∙ AM = М ∙ АС.
Вернемся к примеру, показанному на рис. 1.9, б. Пользуясь условием Леонардо, получаем, что равновесие наступит при соблюдении равенства А ∙ а’O = В ∙ b’О. Для проверки возможностей любого механического ppm нужно сложить все моменты сил (грузов), расположенных справа от оси О, и то же проделать с грузами, расположенными слева. Первые стремятся повернуть колесо по часовой стрелке, вторые — против. Если общая сумма моментов будет равна нулю (так как их знаки противоположны), то колесо не двинется — наступит равновесие.
Таким путем легко показать, что несмотря на все ухищрения, сумма моментов сил у всех механических ppm равна нулю. Леонардо понимал это очень четко. Стоит только вспомнить слова из одной его записи по поводу ppm: «Искатели вечного движения, какое количество пустейших замыслов пустили вы в мир!»
К сожалению, записи Леонардо остались неизвестными ни его современникам, ни ближайшим потомкам. Только с конца XVIII в. началась планомерная расшифровка его тетрадей.
Задачу создания теории, позволяющей научно подойти к анализу механических ppm и ответить на вопрос об их работоспособности, решил англичанин Джон Уилкинс, епископ Честерский (1599-1658 гг.). Его работа была вполне самостоятельна, поскольку ему не были известны результаты Леонардо, полученные более чем на столетие раньше.