Выбрать главу

В тот же день он разыскал в литературе давно известную всем теоретикам (всем, кроме него!) коротенькую формулу Бальмера для водородного спектра. И только взглянув на нее, сразу осознал: вот оно — то, что дает естественное объяснение устойчивости планетарного атома!

Ученик, ассистент и младший друг Бора, бельгийский физик–теоретик Леон Розенфельд удостоверил:

«Он говорил мне не раз: — Как только я увидел формулу Бальмера, все немедленно прояснилось передо мной!»

4

У Бориса Пастернака есть строки: «Однажды Гегель ненароком и, вероятно, наугад назвал историка пророком, предсказывающим назад». Историкам показалось сначала трудно объяснимым, почему Бору самому не пришло в голову обратить внимание на атомные спектры?

Да и вправду… Он ведь сразу, еще весной 12–го года, набрел на идею, что структура системы электронов в атомах управляется квантом действия. А раз так, то немедленно должна была явиться мысль о квантах излучения. А если о квантах излучения, то значит и о спектрах…

Столь проста эта схема размышлений, что она, конечно, искушала Бора. «Ничего не зная ни о каких спект ральных формулах», он тем не'менее отлично знал, что атомы разных элементов испускают разные наборы спектральных линий — разные наборы цветных сигналов. Школьным было сравнение: спектры — это визитные карточки атомов. И он понимал, что каким–то образом устройство атомов в них отражается. Но ему думалось, что прямой связи с проблемой устойчивости тут нет. Он очень поэтично объяснил историкам, что его останавливало:

— Спектры воспринимались так же, как прекрасные узоры на крыльях бабочек: их красотою можно было восхищаться, но никто не думал, что регулярность в их окраске способна навести на след фундаментальных биологических законов.

Регулярность в окраске спектральных линий водорода и описывала формула Бальмера. Перефразируя Бора, можно сказать, что никто не думал, будто эта формула способна навести на след фундаментальных физических законов.

Сам школьный учитель Иоганн Якоб Бальмер не думал этого, когда в год рождения Бора — в 1885–м — опубликовал свою формулу. Она явилась результатом долготерпения и веры в упорядоченность природы: должно же было разноцветное свечение водородной субстанции подчиняться какому–то правилу?! Были известны длины световых волн — или частоты электромагнитных колебаний — для частокола спектральных линий этого легчайшего газа. Бальмер пустился в числовую игру и получил свою формулу, ничего не ведая о механизмах излучения. А есть рассказ, по которому он вообще не думал ни о какой физике. Просто он однажды похвастался, что может найти формулу для закономерной связи любых четырех чисел, и его друг дал ему на испытание длины волн красной, зеленой, синей и фиолетовой линий водорода. Бальмер испытание выдержал. И почти двадцать восемь лет — до начала 1913 года — блестящий итог его «игры в числа» оставался физически нерасшифрованным.

Никто даже не видел, что за прозрачно–простой арифметикой бальмеровского правила призывно зияют атомные глубины.

Там, в этом правиле, из одной величины — переменной — вычиталась другая величина — постоянная, и при этом значение переменной величины зависело от смены целых чисел. Только и всего!

Стоило подставить в формулу число 3, и после вычитания получалась частота световых колебаний для красной линии спектра. А число 4 тем же способом давало частоту зеленой линии. Число 5 — синей. Число 6 — фиолетовой. А для других целых чисел линии уходили в ульт·» рафиолетовый конец спектра, глазом неразличимый.

Какая же физика отражалась в этой арифметике бальмеровской спектральной серии?

Тысячи глаз смотрели на коротенькую формулу и не прозревали. Среди смотревших и непрозревавших бывали физики высокого класса. Кажется, Бор до конца своих дней не узнал об одной истории, случившейся за семь лет до его памятной встречи с Хансеном.

…1906 год. Пасхальные каникулы. Весна в Мозельской долине. Придорожный винный погребок. На велосипедах подкатывают двое из Аахена. Старшему — под сорок, младшему — двадцать с небольшим. Они расхваливают мозельвейн. Хозяин предлагает им оптовую сделку. Старший просит в ответ книгу для гостей. А младший навсегда запоминает появившуюся там запись: «Как только я сумею объяснить формулу Бальмера, я приеду к Вам за вином!»

Хозяин смотрит на два велосипедных следа, оставленных уехавшими, и прикидывает, когда же его осчастливит ученый шутник? Но проходят дни, недели, годы, а профессор из Аахена — маленький такой, с большими усами — все не приезжает за вином. Да его уже и нет в Аахене; говорят, он давно профессорствует в Мюнхене…