Выбрать главу

То был Арнольд Зоммерфельд — тот самый, кто на 1–м конгрессе Сольвея высказал к досаде Резерфорда неверие в любые атомные модели. Но, может быть, именно из–за его нежелания мыслить моделями ему и не далась в руки формула Бальмера?!

Ставший не менее известным теоретиком его тогдаыь ний молодой ассистент Петер Дебай рассказал этот эпизод историкам в качестве забавной детали былого. Но шутливая запись Зоммерфельда звучала вовсе не весело: в ней угадывалось обещание приехать, «когда рак свистнет», то есть неизвестно когда. Иначе: проблема формулы Бальмера виделась безнадежной даже многоопытному теоретику. А начинающий датчанин просто не знал, что она существует. Не было ли в таком неведении его преимущества? (Того благого неведения, о котором говаривал Эйнштейн, когда напоминал с улыбкой, как ему доводилось кое–что открывать в природе лишь по причине незнания, что открыть этого нельзя!)

Увидев формулу Бальмера, Бор уже не мог оторвать от нее взгляда. Его осенило понимание.

То был ярчайший пример откровения — истинная находка для психологов научного творчества. Еще раз подтвердилось, что откровение нисходит только на ищущих. Как и вдохновение, оно не служит предварительным условием успешной работы, а само является первым успехом упрямого труда, когда вдруг становится «далеко видно». Слово «откровение» произнес в беседе с историками сам Бор — так он почувствовал тогда происшедшее.

А произошло вот что…

Бор увидел, что формула Бальмера, в сущности, описывает рождение световых квантов в глубинах водородного атома. Да, рождение порций электромагнитной энергии разных частот: красной, синей, фиолетовой, а там и других порций с частотами, уже не воспринимаемыми человеческим глазом.

Бору все сказали две обыкновеннейшие черты в спектральной формуле: знак вычитания «—» и чередование целых чисел 3, 4, 5, 6… Мысли надо было, право же, очень настрадаться в поисках решения, чтобы так обострилась ее восприимчивость к самым тихим намекам на возможную правду.

Знак «минус» связывал две величины: большую (переменную) и меньшую (постоянную). И оттого, что из первой вычиталась вторая, возникала порция света определенной частоты колебаний! Значит, собственная энергия атома становилась меньше на эту излученную порцию. Стало быть, переменная величина изображала в формуле энергию атома до излучения (потому она и была больше), а постоянная изображала энергию атома после излучения (потому она и была меньше).

Улетевшая порция в одном случае была малой — красный квант, в другом побольше — зеленый квант, в третьем еще больше — синий квант… И это–то зависело от целых чисел, что входили в переменную величину: 3, 4, 5, 6… Чем больше было целое число, тем солидней излученный квант. Тем выше первоначальная энергия атома, с частью которой он расставался при излучении света. Но ведь это означало нечто удивительное: это показывало, что энергия атома не могла быть какой угодно.

Она менялась не плавно, а целыми шажками — прерывисто, как, скажем, меняется нумерация этажей в доме.

Это соображение было равносильно открытию, что в атоме есть пунктирная последовательность уровней энергии.

Каждый излучаемый квант берет старт со своего уровня: красный с одного (не очень высокого), зеленый с другого (более высокого), синий с третьего (еще более высокого)… Так, для бегунов, бегущих по разным дорожкам, старты выстраивают на современных стадионах ступенчато. И нельзя срываться в бег с любого места — только с разрешенной отметки.

А что могло означать постоянство второй величины — энергии атома после излучения? Она, эта остаточная энергия, пребывала одной и той же, какой бы квант ни улетел. Разве это не указывало на существование в атоме самого низкого уровня энергии — как бы первого этажа? Так, для всех бегунов старты хоть и разные, а финишная линия — одна.

Это очередное соображение было равносильно тому желанному открытию, к которому Бор так стремился: у атома есть наинизшее устойчивое состояние с энергией, вовсе не равной нулю! Так как излучают в атоме движущиеся электроны, это показывало, что они не теряют энергию своего движения до конца — не падают на ядро. Во всяком случае в атоме водорода его единственный электрон не опускается ниже какой–то высоты над ядром. Неизвестные законы запрещают ему это сделать. Иначе в формуле Бальмера постоянная величина — энергия после излучения — не была бы конечной: вместо нее стоял бы нуль, то есть ничего не стояло бы.