Резонно возразить: да ведь это означает, что уже классическая механика с первых своих шагов и всегда имела дело не просто с физическими телами, но с кентаврами — «телами–волнами»? Разумеется, да!
Так, стало быть, была она непростительно слепа?
«Слепа» — это верно, а вот «непростительно» — совсем неверно. Она, старая механика, не замечала волнообразности вещества по той же причине, по какой веками не замечала возрастания массы тел с увеличением их скорости: по причине неуследимой малости этого эффекта. Формула де Бройля вместе с небывало новым знанием содержала безусловное оправдание всех экспериментаторов прежних времен.
Могли ли астрономы почуять дебройлевское «дрожание» земного шара? Для ответа — чуть–чуть арифметики…
Помните, длина дебройлевской волны получается при делении постоянной Планка h на массу и скорость тела. Чем больше масса, тем короче волна. Пусть скорости Земли и электрона будут одинаковы. Тогда для земного шара длина волны будет во столько же раз короче электронной волны, во сколько Земля массивней электрона. А цифры такие:
Земля — примерно — 6 · 10+27 граммов,
Электрон — примерно — 10–27 грамма.
Значит, Земля массивней в 6 · 10 54 раз.
Ну а электронные волны, измеряемые ангстремами, имеют длину, сравнимую с атомными размерами. Стало быть, надо размеры атома разделить на число с 54 нулями, дабы получилась длина дебройлевской «земной волны». Непредставимо физическое событие, в котором такая ничтожная малость могла бы подать о себе весть!
Столь же призрачной была волнообразность и того шведского поэта, что имел теоретическое право на метафору: «Я — волна!» Вообразим его могучим здоровяком весом около центнера — 10 5 граммов. Тогда был бы он массивней электрона в 1032 раз. А его дебройлевская волна такое же количество раз умещалась бы в поперечнике атома. Единица с тридцатью двумя нулями! Снова: вообразим ли эксперимент, в котором можно было бы засечь протяженность, равную эдакой доле атомных размеров?! И потому предложенная Карлом Усеном метафора все–таки принадлежала поэзии, а не физике.
…Все началось с планетарной модели — со сравнения атома с Солнечной системой. А теперь можно позволить себе обратное сравнение — попробовать в Солнечной системе узреть черты квантовой атомной модели.
Если так, то планеты вращаются по разрешенным орбитам. А разрешены лишь те, в которых укладывается обязательно целое число «планетных волн» де Бройля. Для нашей Земли это означает, что две ближайшие дозволенные природой орбиты разнятся между собой на одну «земную волну». Кольцевой просвет меж ними и того меньше. В этот просвет не втиснуться ни атому, ни электрону, ни мультимиллионно–миллиардно–триллионной дольке электрона. Такой просвет не более реален, чем полное отсутствие просвета. Словом, эллипсы разрешенных земных орбит просто вплотную прилегают друг к другу, практически заполняя все пространство. Никакой прерывистости в череде дозволенных планетных путей нет. И уровни энергии взаимного притяжения Солнца и планет никакой лестницы не образуют. И думать о квантовых скачках с уровня на уровень совершенно бессмысленно (даже если бы планеты умели скакать, испуская кванты).
Что же получается? «Квантование» Солнечной системы по образу и подобию атома ничего не дает — ничего нового по сравнению с тем, что уже выведала классическая механика. Оттого она и не подозревала о тех новостях, какие принесли с собою «волны материи».
А в микромире, где так неощутимы массы физических телец, очень и очень ощутима их волнообразность. Не случайно, что она раскрылась на электроне: он — легчайшая крупица вещества в атомном обиходе.
Но и тяжелые частицы, созидающие ядра, — протоны и нейтроны, — тоже отчетливо выраженные микрокентавры. Их волновое поведение столь же броско дает знать о себе, как и корпускулярное. Они ведь всего в 2000 раз массивней электрона. Конечно, от этого их дебройлевские волны во столько же раз короче электронных: тысячные доли ангстрема, то есть что–то вроде 10–11 см. Но хотя это и малая величина, она примерно в сто раз больше радиуса электрона–частицы— 10–13см. И потому весьма солидна в масштабах микромира. Легко почувствовать важность «протонных волн» и «нейтронных волн» для верного описания событий в глубинах материи.
Разумеется, волнообразность ядерных частиц тоже была доказана прямыми экспериментами. И они, как электроны, прошли экзамен на дифракцию и интерференцию. Физик Демпстер, кажется, первым получил снимки кристаллов в протонных лучах. И подобно фотографии, рентгенографии, электронографии, возможна протонография. А нейтронография ныне — целая наука.