Выбрать главу

В этом отношении более всего сходны с углеродом бор и кремний. И в периодической таблице элементов (в том виде, в каком ее обычно изображают) бор располагается как раз слева от углерода, а кремний — точно под ним. Однако бор — это элемент довольно редкий. Из-за низкой концентрации в коре планет его участие в случайных реакциях, порождающих жизнь, было бы таким редким, что жизнь на основе бора вряд ли появилась бы даже за пять миллиардов лет.

Остается только кремний, и уж здесь мы по крайней мере можем чувствовать себя уверенно. На Меркурии или на любой другой «горячей» планете может недоставать углерода, водорода или фтора, но, по-видимому, там имеются огромные количества кремния и кислорода: известно ведь, что это основные компоненты горных пород. Если «горячая» планета начнет сперва утрачивать водород и другие легкие элементы, а затем также кремний и кислород, то она перестанет существовать как планета и превратится просто-напросто в рой железо-никелевых метеоритов.

Кремний, как и углерод, способен образовывать длинные цепи. В результате присоединения атомов водорода к такой цепи образуются силаны. К сожалению, силаны менее стабильны, чем соответствующие углеводороды, и при высоких температурах уменьшается вероятность существования силанов достаточно сложного строения, которые могли бы обеспечить возникновение живого.

Но факт остается фактом: кремний образует в горных породах сложные цепочки, и эти цепочки не разрушаются при высокой температуре, даже если горные породы раскалить добела. Однако эти цепочки состоят не только из атомов кремния (Si — Si — Si — Si — Si), а из атомов кремния вперемежку с атомами кислорода (Si — О — Si — О — Si).

Может случиться так, что каждый атом кремния прикарманит четыре атома кислорода. Тогда к атому кремния сверху и снизу присоединятся атомы кислорода, соединенные в свою очередь с другими атомами кремния, и так далее. В результате получится чрезвычайно стабильная пространственная решетка.

Раз уж мы начали говорить о кремнийкислородной цепочке, то посмотрим, а что же произойдет, если атомы кремния с их способностью подцеплять два дополнительных атома вместо атомов кислорода заполучат атомы углерода — в сочетании, конечно, с атомами водорода? Такие гибридные молекулы, имеющие как кремниевую, так и углеродную основу, называются силиконами. Эти соединения тоже были созданы во время второй мировой войны и с тех пор высоко ценятся за высокую стабильность и инертность.

Возможно, что при более высокой температуре какие-то очень сложные силиконы могли бы проявить активность и гибкость, необходимые для жизни. А может быть, существуют и такие силиконы, которые вместо атомов водорода содержат атомы фтора? Подобные силиконы было бы логично назвать фторсиликонами, но, насколько мне известно, они до сих пор не изучались (но я готов тут же отказаться от своих слов, если кто-нибудь меня поправит)[4].

А не возможно ли существование таких систем, в которых простые молекулы силиконов или фторсиликонов (те, что могут оставаться жидкостями при высоких температурах) служили бы фоном для жизни, а сложные молекулы этого же типа — главными действующими лицами?

* * *

Вот мой список химий жизни, охватывающий все температуры, от нескольких сот градусов тепла до абсолютного нуля:

1) фторсиликоны; фон — фторсиликоны;

2) фторуглероды; фон — сера;

3) нуклеиновые кислоты и белки (О); фон — вода;

4) нуклеиновые кислоты и белки (N); фон — аммиак;

5) липиды; фон — метан;

6) липиды; фон — водород.

В этой полудюжине форм жизни лишь третья есть «жизнь в той ее форме, которая нам известна». Чтобы вы ее случайно не прозевали, я выделил ее курсивом.

Это, конечно, не исчерпывает возможностей, подсказываемых богатым воображением; в книгах научных фантастов можно встретиться и с металлическими существами, живущими на ядерной энергии, и с парообразными существами, живущими в газах, и с энергосуществами, живущими в звездах, и с существами — сгустками мыслей, живущими в космосе, и с существами, не поддающимися никакому описанию, живущими в гиперпространстве, и т. д.

Однако в мой список входят, по-видимому, наиболее вероятные формы жизни как явления чисто химического, жизни, основанной на обычных атомах, встречающихся во Вселенной.

вернуться

4

В настоящее время этот класс соединений синтезирован и находит широкое применение. — Прим. ред.