Выбрать главу

Иллюстрирация влияния яркости, насыщенности и цветового тона на внешний вид изображения:

исходная картинка

увеличение яркости

увеличение насыщенности

изменение цветового тона

С яркостью, насыщенностью и цветовым фоном мы еще не раз встретимся, когда займемся вопросами обработки полученных изображений. Кроме того, рассматривая различные стандарты телевизионных сигналов, мы также будем обращать внимание и на возможные искажения этих величин при телевизионном приеме.

В телевидении выделение яркостной составляющей необходимо для обеспечения совместимости цветных и черно-белых телеприемников. Другими словами, сигнал яркости в цветном телевидении должен полностью совпадать с сигналом, воспринимаемым черно-белыми ТВ приемниками.

Кроме того, имеет значение объем передаваемой информации: чем меньше объем, тем дешевле и проще передающие системы. Сократить объем информации можно, если уменьшить количество данных о цвете. Вот почему, выражаясь языком компьютерной графики, передается и принимается не RGB-сигнал, а яркость и два цветоразностных сигнала, или YUV, где Y – яркость изображения, U и V – цветоразностные сигналы, причем U= R – Y, а V = B – Y.

Для человеческого глаза разные цвета имеют неодинаковую яркость. Если расположить опорные цвета в порядке убывания яркости, выстроится следующий ряд: «Зеленый-Красный-Синий», то есть при одинаковой насыщенности свечения наиболее ярким будет восприниматься зеленый объект, а наиболее темным покажется синий. В соответствии с этим наибольшую долю сигнала яркости составляет зеленый, наименьшую – синий. Один из стандартов, соответствующий так называемому «белому С» или цвету облачного неба (цветовая температура 6500 °C), определяется следующими соотношениями:

Y=0,299R+0,587G+0,114B

В таком случае нет необходимости кодировать все три цвета. Достаточно задать два из них, а третий легко вычисляется путем несложных арифметических операций. Как указано выше, U и V могут иметь в два раза более низкое разрешение, чем Y.

Следует отметить, что в приведенной выше формуле, описывающей работу устройства матрицирования, составляющие R, G и B не являются оригинальными сигналами, а представляют собой продукты специальных преобразований, называемых гамма-коррекцией, призванной компенсировать нелинейную зависимость яркости свечения экрана кинескопа от амплитуды модулирующего сигнала.

Изображение на телеэкране создается при движении электронного луча по экрану, покрытому люминофором – материалом, излучающим свет определенной длины волны, то есть определенного цвета. Этот процесс называется сканирование, и происходит по строкам (горизонтальное) и кадрам (вертикальное). Луч проходит строку слева направо, затем перемещается на расположенную ниже строку (перемещение происходит в том же порядке, как мы читаем – слева направо, сверху вниз). Для того чтобы глаз видел не отдельные вспышки, а равномерно светящийся экран, его сканирование должно происходить не реже, чем 25 раз в секунду, то есть с частотой 25 Гц. На самом деле обновляется не сразу весь кадр, а полукадр (поле). То есть сначала сканируются четные, затем – нечетные строки. При обновлении поля с частотой 50 Гц кадр обновляется с частотой 25 раз, и этого вполне достаточно для нормального восприятия изображения. Чтобы создать на экране картинку, состоящую из черной и белой горизонтальных полос, на вход телевизора надо подать сигнал частотой 50 Гц. Чем мельче детали изображения (чаще происходит чередование светлых и темных участков), тем выше должна быть частота видеосигнала, передающего это изображение. Максимальное число элементов, из которых может состоять картинка на экране, равно числу строк, умноженному на количество элементов в строке. Для принятой у нас разновидности французского стандарта SECAM (Sequentiel Couleur A Memoire – последовательная передача цветов с запоминанием), который будет подробно рассмотрен в следующем разделе этой главы, число строк равно 625. Однако не все строки являются видимыми, поскольку часть из них используется только для обеспечения нормальной работы телевизора. Число видимых строк – 576. В общепринятых форматах соотношение сторон кадра равно четыре к трем (на четыре горизонтальных элемента ТВ изображения приходится три вертикальных), то есть число видимых элементов в строке равно 576 X 4/3 = 768 (если горизонтальные и вертикальные размеры элемента одинаковы). Видимая часть строки обычного ТВ сигнала составляет 52 микросекунды, соответственно для получения на экране сетки из 768 чередующихся черных и белых полос надо подать на вход телевизора сигнал частотой около 7,38 МГц. В компьютерных мониторах длительность строк еще меньше, а разрешение больше, поэтому компьютерные мониторы часто работают с частотами до 200 МГц.