Выбрать главу

Наиболее просто устроены растительные вирусы. Они состоят из нити нуклеиновой кислоты, окруженной белковой оболочкой. Нуклеиновые кислоты являются носителями наследственных свойств вирусов, и в каждой вирусной частице содержится лишь одна нуклеиновая кислота-ДНК (дезоксирибонуклеиновая) или РНК (рибонуклеиновая). Вирусные белки построены из таких же аминокислот, что и клетки их хозяев.

Несколько сложнее устроены бактериальные вирусы, у которых нуклеиновая кислота заключена в отчетливо выраженные белковые "головки". Кроме того, многие бактериальные вирусы имеют специальные тонкие белковые "хвосты", с помощью которых они прикрепляются к своим жертвам.

И, наконец, наиболее сложным является строение животных вирусов. Так, например, весьма крупный вирус оспы, помимо нуклеиновой кислоты и белка, содержит липиды, углеводы, цистин, медь. При этом он настолько велик что его можно рассмотреть с помощью светового микроскопа.

Любопытно, что чем более высокое положение в вирусной "иерархии", занимает вирусная частица тем больше содержит она нуклеиновой кислоты и соответственно меньше белка. Так, в вызывающих заболевания человека вирусах гриппа, полиомиелита РНК составляет 24-25% и белок соответственно 76-75%. Совсем иное соотношение мы видим в растительных вирусах: РНК в вирусах картофеля и табачной мозаики содержится не более 5-6%, тогда как белок составляет 95-94% всей "массы" вирусной частицы.

Помимо жиров, углеводов, минеральных солей и некоторых других химических элементов, входящих в состав наиболее сложно устроенных вирусов, в вирусных частицах содержатся ферменты. Так, например, в составе вирусов гриппа обнаружен фермент нейраминидаза, у вируса менингопневмонии-цитохромредуктаза, у бактериальных вирусов — лизин и т. д. Задача этих ферментов — растворять оболочку клетки и помогать вирусу проникнуть в тело своей жертвы.

Обращает на себя внимание необычайно простое и в то же время предельно целесообразное устройство вирусов. В них нет ничего лишнего. Как мы убедимся в дальнейшем, каждый компонент вирусной частицы выполняет свои строго опеределенные функции: белковая оболочка оберегает нуклеиновую кислоту от внешних неблагоприятных воздействий, нуклеиновая кислота определяет наследственные и инфекционные свойства вирусов, ферменты обеспечивают прохождение вирусов внутрь клетки.

И все же, несмотря на это, казалось бы, сложное строение, вирусы остаются наиболее элементарной формой живой материи. С точки зрения структуры, самый крупный и сложно устроенный вирус весьма далек от самой мельчайшей бактерии.

Тысячи ученых во многих странах мира заняты постоянными, углубленными исследованиями поведения и повадок "маленьких убийц". Исследования не прекращаются ни на один день — ученые прекрасно знают, какую огромную пользу для человечества принесет победа науки над вирусами. И нужно отдать должное исследователям — в результате проделанной огромной работы современные представления о мире вирусов неизмеримо расширились.

Наряду с основным электронномикроскопическим методом изучения вирусных частиц, существуют и другие способы проникновения в этот таинственный мир. О некоторых из них здесь уместно рассказать.

...В начале нашего столетия английский врач Алексис Каррел решил доказать своим коллегам, что изолированная живая ткань, если ее снабжать кислородом и правильно питать, устраняя при этом продукты обмена веществ и дыхания, способна существовать в живом состоянии неограниченно долгое время. С этой целью он провел эксперимент с живой тканью, взятой из сердечной мышцы цыпленка. Успех превзошел все ожидания — тканевая культура, помещенная в определенные условия, сохранялась в течение 21 года!

Так опыт Алексиса Каррела помог открыть принципиально новый метод биологического исследования — метод культуры ткани, позволивший выращивать и изучать живые клетки вне организма.

В дальнейшем, по мере совершенствования этого метода, материал для экспериментов становился все более разнообразным. Помимо ткани сердца, для изучения жизненных процессов в клетках использовались изолированные ткани кожи, почек, других органов. Была разработана и усовершенствована методика эксперимента: ткань помещалась в специальную питательную среду и сохранялась при постоянной температуре 35-37°. Время от времени препарат промывался, в него добавлялась свежая питательная среда. В таких условиях клетки жили и размножались.