Выбрать главу

Смешанная гипоксия, представляющая сочетание нескольких видов гипоксий, встречается достаточно часто при различных отравлениях.

Обоснование кислородной терапии и искусственного дыхания при патологических состояниях.

При гипоксии можно выделить срочный и долговременный этапы адаптации. Срочный этап адаптации заключается в учащении и углублении дыхания, расширении бронхов, активации сердечнососудистой системы, в результате чего происходит повышение доставки кислорода в организм и выделения углекислого газа. Необходимо отметить, что снижение в организме парциального напряжения углекислого газа может повлечь за собой снижение мозгового и коронарного кровообращения, уменьшение возбудимости дыхательного и вазомоторного центров, явиться причиной нарушения кислотно-основного состояния, а также диссоциации оксигемоглобина крови. В результате централизации кровообращения и перераспределения крови ряд жизненно важных органов (головной мозг, сердце, легкие) получает больше крови и питательных веществ. Возрастает объем циркулирующей крови за счет выброса крови из депо и костного мозга. Функционирование тканей переходит на более экономные пути использования энергии.

Если гипоксия продолжается длительно, возникает долговременный этап адаптации, при котором организм приобретает повышенную устойчивость к гипоксии. В системах, ответственных за транспорт кислорода и его утилизацию, развиваются явления гипертрофии и гиперплазии. Увеличивается масса дыхательных мышц, функционирующих легочных альвеол, костного мозга, возрастает количество эритроцитов и гемоглобина в крови, количество митохондрий в клетках. Тканевые ферменты дыхательной цепи утилизируют кислород более эффективно, усиливается гликолиз. Организм на длительное время приобретает повышенную устойчивость к гипоксии.

При длительно существующей или выраженной по тяжести гипоксии процессы адаптации становятся несовершенными, в результате чего гипоксия может привести к летальному исходу.

Ингаляционная кислородная терапия.

Патогенетическое лечение гипоксических состояний, развивающихся при любой форме острых отравлений, состоит в рациональном применении кислорода. Введенный в организм кислород достигает страдающих от гипоксии тканей и нормализует их окислительный обмен.

В клинической практике для устранения гипоксических состояний широкое распространение получила ингаляционная кислородная терапия (ИКТ). Она применяется при гипоксии любого генеза как у пораженных отравляющими веществами (ОВ) с сохраненным спонтанным дыханием, так и при искусственной вентиляции легких (ИВЛ). При ИКТ увеличивается процентное содержание кислорода в плазме, возрастает насыщение кислородом гемоглобина. Показанием к ИКТ является дыхательная недостаточность различного происхождения, сопровождающаяся снижением парциального давление кислорода в артериальной крови (раО2).

Дыхательная недостаточность – патологический синдром, при котором парциальное напряжение кислорода в артериальной крови менее 60 мм рт. ст., а парциальное напряжение углекислого газа более 46 мм рт. ст. при условии, что больной (в покое) дышит атмосферным воздухом при нормальном барометрическом давлении.

При назначении ингаляций кислорода необходимо ориентироваться на клинические признаки гипоксии (цианоз, одышка, тахи- или брадикардия, артериальная гипер- или гипотензия, нарушения сознания, появление судорог и др.), показатели газового состава и кислотно-основного состояния (КОС) крови. Эффективность ИКТ в значительной степени зависит от механизма возникновения гипоксии. При назначении ИКТ важно учитывать, что она не всегда эффективна и может оказывать отрицательное влияние на организм:

1. у тяжелопораженных ОВ с явлениями гиповентиляции ИКТ подавляет гипоксические механизмы стимуляции дыхания, способствует развитию дыхательного ацидоза;

2. при гипероксии происходит задержка углекислоты в тканях, так как последняя удаляется с восстановленным гемоглобином, количество которого уменьшается из-за увеличения содержания оксигемоглобина;

3. длительная ингаляция высоких концентраций кислорода может привести к развитию патологических явлений, связанных с повреждением легочной паренхимы (разрушение сурфактанта, изменения респираторного эпителия, легочных капилляров, развитие интерстициального отека легких), нарушением тканевого метаболизма и активацией свободнорадикальных процессов.

Указанные отрицательные эффекты кислородной терапии проявляются только при продолжительном применении кислорода с высоким (более 70%) его содержанием в дыхательной смеси.

Способы ингаляционной кислородной терапии разнообразны. Применяют носовые катетеры и канюли, лицевые маски, интубационные трубки, трахеостомические канюли, транстрахеальную оксигенацию (через пластиковый катетер, вводимый при чрескожной катетеризации трахеи.

Гипербарическая оксигенотерапия.

Количество газа, которое может быть растворено в жидкости, согласно закону Генри, прямо пропорционально парциальному давлению этого газа над жидкостью. При ингаляции 100 % кислорода в условиях нормального атмосферного давления в плазме растворяется около 2,04 мл О2, а при давлении вдвое выше атмосферного объем растворенного О2 в 100 мл крови будет составлять уже 4,34 мл, при давлении втрое выше атмосферного – 6,65 мл и т. д. Иными словами, повышая давление кислорода, можно создать условия, при которых для обеспечения метаболических функций организма независимо от возможностей кислородсвязывающих свойств крови будет достаточно кислорода, растворенного в плазме. Эти условия создаются в камерах гипербарической оксигенации (ГБО).

Камеры для ГБО бывают различных объемов: небольшие – для лечения местных процессов (например, в конечностях) и достаточно большого объема, в которые помещают больного (в частности, при лечении дыхательной недостаточности). Существуют камеры, в которых вместе с больным может находиться медицинский персонал (барооперационные).

Наиболее выраженный клинический эффект гипербарической оксигенации получен при отравлениях угарным газом. Физически растворенный в плазме под повышенным давлением кислород может полностью обеспечить метаболические потребности тканей при блоке гемоглобина, способствует увеличению диссоциации карбоксигемоглобина и выделению окиси углерода из организма. Метод ГБО хорошо зарекомендовал себя также при отравлениях, вызывающих тканевую гипоксию (отравления синильной кислотой, цианидами, барбитуратами и др.).

Искусственная вентиляция легких.

Под ИВЛ понимают перемещение воздуха между внешней средой и альвеолами под влиянием внешней силы. ИВЛ улучшает газообмен за счет увеличения функциональной емкости легких, нормализации вентиляционно-перфузионных соотношений, метаболических процессов, уменьшения энергозатрат на работу дыхания, что сопровождается положительными сдвигами при гипоксических состояниях.

Искусственная вентиляция легких по принципу вдувания воздуха в легкие может осуществляться:

1. без аппаратов – способом рот в рот или рот в нос. Вдыхание воздуха спасающим в легкие пострадавшего рассматривается в качестве высокоэффективной меры восстановления дыхания. Этот способ в зарубежной литературе получил название «поцелуй жизни». К сожалению эти методы совершенно непригодны в атмосфере, содержащей ОВ. Кроме того, при поражении ОВ вдыхание спасающим воздуха, поступающего из легких пораженного, связано с опасностью поражения ОВ, содержащимся в выдыхаемом воздухе. В связи с этим в настоящее время доказана недопустимость данного метода при оказании медицинской помощи пораженным ОВ.

2. с помощью аппаратов (вручную или автоматически).

Вместе с тем, применяя ИВЛ по принципу вдувания, важно помнить, что она значительно отличается от самостоятельного дыхания. Так, при самостоятельном дыхании давление в дыхательных путях при вдохе (альвеолярное) ниже атмосферного (примерно -2 см вод. ст.), а во время выдоха выше и в конце его сравнивается с атмосферным. При ИВЛ вдох осуществляется при давлении выше атмосферного (на 12–20 см вод. ст.) и только к концу выдоха соответствует ему. Эта разница отражается и на изменениях внутриплеврального давления: при самостоятельном дыхании на вдохе оно составляет в среднем минус 5–10 см вод. ст., на выдохе минус 5 см вод. ст., при ИВЛ – на вдохе 10–20 см вод. ст., а на выдохе может быть равным атмосферному или быть отрицательным.