Выбрать главу

— Значит, — решил Илюша, — это гораздо хитрее того, что мы учим в школе о параллельных?

— Ну еще бы! — отвечал Радикс. — Если бы это было то же самое, так ведь тогда и говорить было бы не о чем.

— Какая же она, однако, удивительная, эта геометрия! — задумчиво произнес Илюша.

— Если хочешь знать, — отозвался Радикс, — сферическая геометрия еще удивительнее «воображаемой», только мы

— 280 —

к ней более привыкли благодаря тому, что глобус стал нам приятелем со школьной скамьи, если не раньше. А если подумать, то нетрудно убедиться в этом. Сравни хотя бы такие обстоятельства. Прямая у Евклида безгранична, у Лобачевского тоже, а на сфере она (например меридиан) не только не безгранична, но еще и замкнута.

— Да! — отвечал Илюша. — А ведь действительно так!

— Насчет же всяких неожиданностей в «воображаемой» геометрии, так я могу тебе подарить на память еще один такой случай. Если ты возьмешь на плоскости Лобачевского окружность, разделишь ее на несколько равных частей и в точках деления проведешь касательные к этой окружности, то они образуют многоугольник только в том случае, если радиус окружности очень невелик, а в противном случае они вовсе не встретятся и не пересекутся.

— Мы можем, — добавил Асимптотос, — показать тебе еще кое-что по поводу треугольников Лобачевского, но только это будет потруднее. И нам кое в чем придется с тобой условиться.

— Как это условиться? — спросил Илюша.

— Вот как. Мы знаем, что роль «прямых» на сфере играют дуги больших кругов. А теперь мы условимся считать «прямыми» на сфере не дуги больших кругов, а дуги некоторых других кругов. Мы начнем с того, что рассечем сферу пополам. Положим полусферу на плоскость сечением вниз. А далее согласимся считать дуги кругов, плоскость которых перпендикулярна к той плоскости, на которой лежит наша полусфера, прямыми. Надеюсь, что ты понял меня?

— Но ведь можно «условиться» о чем угодно! — сказал в недоумении Илюша. — Захочу и «условлюсь», что у меня семь равняется нулю. Так что ж, так и будет?

— Мне кажется, — отвечал Радикс, — что не так уж трудно придумать случай, когда такое равенство будет иметь смысл. Например, допустим, что ты будешь различать числа только по остаткам, которые они дают при делении на семь. Ясно, что в этом смысле 1, 8, 15 и так далее будут равны между собой; 2, 9, 16 и так далее будут также равны между собой, а 7 окажется равным числам 0, 14, 21 и прочим. Тебе может показаться, что это бессмыслица. Но допусти, что некоторый месяц начинается в воскресенье и мы обозначим этот день нулем, понедельник — единицей, вторник — двойкой и так далее. Тогда, если мы интересуемся только днями недели, а «нуль», «семь» и «четырнадцать» — все будут обозначать воскресенья, то в этом смысле ты можешь не делать между ними различия. Так что уже не столь бессмысленно «условиться», что семерка равна нулю. Имей в виду, что при изучении известных вопросов вполне возможно поставить некоторое осо-

— 281 —

бое условие, и это может даже сделать для нас доступными такие вопросы, которые без этого трудно было бы исследовать[19].

— Пожалуй, — сказал Илюша, — я с таким рассуждением готов согласиться, но вот чего я боюсь: если мы условимся считать какие-то линии на сфере «прямыми», смогут ли эти «прямые» сохранить свои обычные свойства? А если не сохранят, то разве это будут «прямые»?

— Видишь ли, — отвечал Асимптотос, — все свои свойства наши «прямые», разумеется, сохранить не смогут, но ведь мы как раз и хотим рассмотреть на примере такую геометрию, в которой некоторые свойства прямых таковы же, что и на плоскости (например, две «прямые» пересекаются только в одной точке, через две точки проходит одна и только одна «прямая» и так далее). Однако в отношении свойств параллельности или величины суммы углов треугольника наши новые линии должны подчиняться не обычным законам геометрии, а законам геометрии Лобачевского. А если это так, то совершенно очевидно, что такие «прямые», поскольку мы их рассматриваем в нашем обычном евклидовом пространстве, должны и по внешнему виду отличаться от обыкновенных прямых. Сейчас нам даже придется отказаться и от того свойства, которое мы сохраняем на сфере при пояснении римановой геометрии: «прямые» уже не будут линиями кратчайшего расстояния на полусфере. Однако, чтобы ты не очень уж задумывался над смыслом таких «условий», мы сейчас придумаем самый животрепещущий пример…

вернуться

19

АЛ-I; XI, 5, 6.