Выбрать главу

— А теперь, — продолжал Коникос, — смотри, какие тени будут получаться от кружка на столе. Если я опущу диск ниже пламени, то на столе получится… На-ка, возьми диск, попробуй сам!

Илюша взял диск, опустил его немного ниже пламени лампы и получил две тени: эллиптическую и круговую, которые он уже видел на стене.

— Теперь, — сказал Асимптотос, — слушай мою команду! Поставь диск вертикально так, чтобы самая высокая его точка находилась на уровне пламени.

Илюша поставил. Тень от кружка стала с одной стороны овальной, а с другой — уходила прямо по столу, и казалось, что две стороны тени уходят вдаль, стремясь сделаться все более и более параллельными.

— Эта тень похожа, — сказал Илюша, — пожалуй, опять на кривую квадратного уравнения.

— Справедливо, — отвечал Коникос. — Ты получил параболу. А теперь подними кружок еще немного повыше, так, чтобы его горизонтальный диаметр был на уровне пламени.

Илюша приподнял кружок. Теперь на стол падала тень только от нижней части кружка. С одной стороны она тоже была похожа на овал, но с другой стороны тень уходила до самого края стола. Однако ее стороны не стремились к параллельности, а шли почти прямо в разные стороны.

— А это что такое?

— Н-не знаю, — сказал Илюша. — Но так как мы видели все конические сечения, кроме гиперболы, это, наверное, она и есть?

— Она самая. А скажи, пожалуйста, не встречал ли ты гиперболу вечером на улице?

— На улице? — удивился Илюша. — Нет, кажется, не встречал.

— А видал ли ты вечером на улице такую картину: у подъезда дома стоит автомобиль с одной зажженной фарой, и свет от фары падает на мостовую?

— 297 —

—Это я, конечно, видал, — ответил Илюша.

— Так вот имей в виду, что освещенный кусок мостовой и рисует на асфальте самую настоящую гиперболу, то есть одну из ее ветвей. Почему? Потому что световой пучок выходит из фары конусом, а мостовая в данном случае является секущей плоскостью по отношению к этому конусу. Когда увидишь эту гиперболу в следующий раз, кланяйся ей от меня… Эта геометрия теней называется проективной геометрией. Вот тебе и пятая геометрия! Учи только, не ленись, у нас геометрий хватит!

— Хорошо, — сказал скромно Илюша, — постараюсь.

— Эта геометрия, — пояснил Радикс, — имеет самое непосредственное отношение к искусству живописи, ибо только она может научить нас, как нарисовать некий предмет на плоскости так, чтобы зрителю казалось, что он видит перед собой настоящий предмет в трехмерном пространстве. Во времена Возрождения эта наука развивалась в трудах крупнейших живописцев того времени: таковы были знаменитый Аьбрехт Дюрер, живший в начале шестнадцатого века, крупнейший архитектор-итальянец Альберти (конец пятнадцатого века) и один из величайших художников всех времен, разносторонний гений Леонардо да Винчи (родился в тысяча четыреста пятьдесят втором году, скончался в тысяча пятьсот девятнадцатом), тоже итальянец по происхождению, который недаром сказал, что глаз человеческий — это «князь математики». Далее ее разрабатывал Паскаль (о нем ты уже слышал), а также и другой француз, Понселе, который был офицером наполеоновской армии, участвовал в походе на Россию, был тяжело ранен в сражении под Красным и подобран русскими войсками на поле боя. После этого он попал в плен к русским и почти целый год прожил в Саратове: там-то он и написал свое знаменитое сочинение по геометрии. Кстати сказать, развитие этой ветви геометрии способствовало

— 298 —

правильному истолкованию математиками геометрии Лобачевского.

— Конечно, — заметил Илюша, — эта проективная геометрия теней очень красива, но геометрия Лобачевского мне как-то больше нравится.

— С тобой можно согласиться, — ответил Радикс. — Открытие Лобачевского вызвало сначала полное непонимание…

И при этом не только со стороны людей, которые были заведомо невеждами, а даже со стороны тех, которые, казалось бы, могли разобраться… Но слишком для них все это было неожиданно и непонятно. У себя на родине Лобачевский подвергался жестоким издевательствам в продажной печати времени императора Николая Первого. В то время как великий Гаусс учился русскому языку, чтобы прочесть сочинения Лобачевского в подлиннике, русские журналы, руководимые известным гонителем Пушкина, царским шпионом — Булгариным, глумились над Лобачевским, уверяя, что такую геометрию может выдумать только человек, поставивший себе цель — издевательство над наукой. Даже угрюмый реакционер, тогдашний министр народного просвещения, Уваров пытался защитить Лобачевского, но безуспешно. Булгарин спрятал его возражения «под сукно». Все, что мог сделать Уваров для Лобачевского, который был все-таки ректором Казанского университета, — это напечатать в официальном ученом «Журнале министерства народного просвещения» в ежегодном списке трудов русских ученых против имени Лобачевского: «Ректор Казанского университета, занимался сочинением статьи для журнала Крелле». Это кое-что значило для людей понимающих, ибо в то время математический немецкий журнал, издаваемый Крелле, был самым авторитетным журналом в мире. В дальнейшем выяснилось, что Уваров рассчитал не так плохо, ибо статью Лобачевского в журнале Крелле заметил и похвалил сам Гаусс! А гордость родины, математик Лобачевский, так и умер, даже не удостоенный звания доктора наук за свои труды, ставшие краеугольным камнем для всей новой математики девятнадцатого века[21].

вернуться

21

У нас есть много хороших книг о Лобачевском. Вот некоторые из них: А. П. Норден. «Элементарное введение в геометрию Лобачевского». М., Гостехиздат, 1953; Б. Н. Делоне. «Элементарное доказательство непротиворечивости планиметрии Лобачевского». М., Гостехиздат, 1956; П. А. Широков и В. Ф. Кагап. «Строение не-евклидовой геометрии». М., Гостехиздат, 1950; А. П. Котельников и В. А. Фок. «Некоторые применения идей Лобачевского в механике и физике».