Дальнейшие преобразования уже несложны:
Δx / Δy = (18x1 — х12 — 18x + х2) / (x1 — x) = [18(x1 — x) — (х12 — х2)] / (x1 — x) =
= [18(x1 — x) — (х1 — х)(х1 + х)] / (x1 — x) = 18 — (х1 + х)
Теперь, если х1 безгранично приближается к х, а у1 тем же порядком приближается к у, то, очевидно, мы уже получаем полное право в пределе не делать отличия между х1 и х, а просто положить их равными друг другу. Тогда правая часть последней формулы превратится в
18 — 2х.
Это и будет искомая производная. А чтобы найти максимум, мы должны приравнять ее нулю, решить получившееся уравнение относительно икса — и все. Отмечу еще, что предел отношения обозначается теперь уже не через отношение дельт, а через отношение латинских d; пишется
dy / dx = 18 — 2х ,
а читается «дэ игрек по дэ икс». Но, конечно, для более сложных функций все это сделать труднее. Дифференциальное исчисление и занимается установлением формул и правил, с помощью которых можно, зная выражение у через х, найти закон «изменения скорости изменения» у, то есть найти выражение для производной dy / dx. Интегральное исчисление, как мы выяснили, занимается обратной задачей.
— Очень хорошо! — воскликнул Илюша. — Теперь еще только один вопрос. Ты обещал рассказать про гору Пюи-де-Дом и Паскаля.
— 385 —
— Хорошо! Это происходило в то самое время, когда европейские мыслители нового времени начали деятельно и успешно бороться со схоластическим (только не путан с нашими схолиями!) мировоззрением. Схоласты старались все доказывать не опытным путем, а при помощи ссылок на авторитеты. Дело доходило до очень смешных, с нашей точки зрения, разговоров. Одни из очень видных схоластических мудрецов, например, утверждал, что чудеса, о которых рассказывают монахи, вещь вполне возможная, и ссылался при этом всерьез на поэмы римского стихотворца Овидия, который просто писал очень красивые и замысловатые сказки в стихах о волшебных превращениях[30]. А наш мудрец все это принял за чистую монету. Если так рассуждали в то время ученые-философы, то можешь себе представить, что делали люди менее образованные! Так вот, в то время единственным авторитетом в области физики признавался Аристотель. И мнения этого «великого стагирита», то есть уроженца города Стагиры, нельзя было оспаривать. Аристотель объяснял явление всасывания, которое наблюдается в насосе, тем, что «природа боится пустоты». Эта странная черта характера природы никого не удивляла, никто и не подумал найти ее причину, и дальше этого объяснения не шли. Но в семнадцатом веке, когда техника уже значительно ушла вперед и, в частности, в связи с развитием горного дела развилась техника водоотливных средств, Торичелли под влиянием Галилея произвел замечательные опыты и неожиданно для всех мудрецов нашел свою знаменитую «торичеллиеву пустоту». Паскаль повторил опыты Торичелли, но с очень важным усложнением; он делал их на разной высоте над уровнем моря, дабы обнаружить различия в давлении атмосферы на разных высотах, вполне объясняющие боязнь пустоты. Это ему удалось в полной мере. По просьбе Паскаля его шурин проделал опыты на горе Пюи-де-Дом, на сравнительно большой высоте. Паскаль так ценил эти опыты на горе Пюи-де-Дом, что придумал себе даже особенный псевдоним «Луи де Монтальт», что обозначает «Луи с Высокой Горы». Это был великий бой ученых с невежеством, и высота Пюи-де-Дом, этот Монтальт Паскаля, осталась в этой битве за нами!
— 386 —
— Ура! — закричал Илюша. — Наша взяла! А отбить они ее уже больше не могли?
— Нет! Шалишь! — отвечал Радикс. — Противник предпринимал неоднократные контратаки, но был отбит с тяжелыми потерями.
— Так им и надо! А теперь расскажи мне подробней о Галилее.
30
Замечательный римский поэт Публий Овидий Назон жил в Риме на самом рубеже древней и нашей эры.
Так сказал о нем наш дорогой Пушкин в «Цыганах». А в «Евгении Онегине» Пушкин вспоминает о том, как Овидий умер изгнанником: