Выбрать главу

На самом деле, это был именно тот вопрос, который привел меня из моей вотчины, физики элементарных частиц, в космологию. В течение 1970-х и 1980-х годов, благодаря детальному изучению движения звезд и газа в нашей Галактике, а также изучению движения галактик в больших группах галактик, называемых кластерами, становилось все более ясно, что во Вселенной есть не только то, что видится невооруженным глазом или в телескоп.

Гравитация является главной силой, действующей в огромных масштабах галактик, поэтому измерения движения объектов в этих масштабах позволяет нам исследовать гравитационное притяжение, вызывающее это движение. Такие измерения начались с новаторской работы американского астронома Веры Рубин и ее коллег в начале 1970-х. Рубин закончила Джорджтаун в степени доктора, посещая вечерние занятия, в то время как ее муж ждал в машине, потому что она не умела ее водить. Она подавала заявление в Принстон, но в этот университет не принимали женщин по программе аспирантов-астрономов до 1975 года. Рубин стала лишь второй женщиной, когда-либо награжденной Золотой медалью Королевского астрономического общества. Эта медаль и многие другие ее заслуженные награды стали следствием ее новаторских измерений скорости вращения нашей галактики. Наблюдая звезды и горячий газ все дальше от центра нашей галактики, Рубин определила, что эти области двигались гораздо быстрее, чем должны были бы, если бы гравитационная сила, вызывающая их движение, была обусловлена массой всех наблюдаемых объектов в галактике. Благодаря ее работе, космологам в конечном итоге стало ясно, что единственным способом объяснить это движение было постулировать существование значительно большей массы нашей Галактики, чем можно было объяснить, суммировав массу всего этого горячего газа и звезд.

В этой теории, однако, была одна проблема. Те же расчеты, которые так красиво объясняют наблюдаемое содержание легких элементов (водорода, гелия и лития) во Вселенной, также говорят нам, сколько примерно протонов и нейтронов, вещества обычной материи, должно существовать во Вселенной. Причина в том, что, как и в любом кулинарном рецепте — в данном случае в ядерной готовке — количество вашего конечного продукта зависит от того, сколько каждого ингредиента вы берете. Если вы удвоите рецепт, например, возьмете четыре яйца вместо двух, вы получите больше конечного продукта, в данном случае омлета. Тем не менее, начальная плотность протонов и нейтронов во Вселенной, возникшая в результате Большого Взрыва, как это установлено из наблюдаемого относительного содержания водорода, гелия и лития, обеспечивает примерно вдвое большее количество вещества, чем мы можем видеть в звездах и горячем газе. Где эти частицы?

Легко представить себе способы скрыть протоны и нейтроны (снежки, планеты, космологов… ничто из этого не светится), поэтому многие физики полагали, что в темных объектах находится столько же протонов и нейтронов, как и в видимых объектах. Однако когда мы подсчитываем, сколько должно быть «темной материи», чтобы объяснить движение видимой материи в нашей галактике, мы находим, что отношение всей материи к видимой материи должно быть не 2 к 1, а скорее 10 к 1. Если это не ошибка, то темная материя не может состоять из протонов и нейтронов. Их просто недостаточно.

Когда я был молодым физиком элементарных частиц в начале 1980-х, для меня было очень интересно узнать об этой возможности существования экзотической темной материи. Это предполагает, в буквальном смысле, что преобладающими частицами во Вселенной были не добрые традиционные нейтроны и протоны, а, возможно, какой-то новый вид элементарных частиц, что-то, чего не существует на Земле сегодня, что-то таинственное, текущее среди звезд и молча командующее парадом, который мы называем галактикой.

Что еще более увлекательно, по крайней мере, для меня, это означает три новых направления исследований, которые могли бы пролить новый свет на природу реальности.

1. Если эти частицы были созданы в результате Большого Взрыва, как легкие элементы, которые я описал, то мы можем использовать идеи о силах, управляющих взаимодействием элементарных частиц (вместо взаимодействия ядер, важного при определении относительного содержания элементов), чтобы оценить относительное количество возможных экзотических новых частиц во Вселенной сегодня.

2. Можно было бы вывести общее количество темной материи во Вселенной на основе теоретических представлений в физике элементарных частиц, или можно предложить новые эксперименты, чтобы обнаружить темную материю — то и другое может сказать нам, сколько есть материи всего и, следовательно, какова геометрия нашей Вселенной. Работа физики — не изобретать вещи, которые мы не можем увидеть, чтобы объяснить вещи, которые мы увидеть можем, а выяснить, как увидеть то, что мы не можем видеть, то, что было ранее невидимым, известную неизвестность. Каждая новая кандидатура на элементарную частицу темной материи предполагает новые возможности для экспериментов по прямому обнаружению частиц темной материи, разгуливающих по всей галактике, строя на Земле детекторные устройства, чтобы обнаружить их, когда Земля преграждает путь их движению в космосе. Вместо того, чтобы использовать телескопы для поиска далеких объектов, если частицы темной материи в диффузных сгустках проникают по всей Галактике, они сейчас здесь, и наземные детекторы могут выявить их присутствие.