Выбрать главу

Резерфордовское рассеяние

11 По всей видимости, на рубеже XIX–XX веков сливовый пудинг считался настоящим деликатесом. Лично меня от одного названия с души воротит.

Вероятно, электроны вам уже знакомы. Эти элементарные частицы были открыты первыми — еще в 1897 году, когда Дж. Дж. Томсон (пренебрежительно) назвал их «тельцами». Кроме того, их удивительно легко раздобыть: стоит взять кусок металла, нагреть его, и они так и полетят в разные стороны! А если вам еще не разрешают самостоятельно зажигать плиту, наденьте шерстяные носки и прикоснитесь к чему-нибудь металлическому. Что, больно? Наука требует жертв (и электроны тоже)!

Если бы «модель сливового пудинга» оказалась верной, траектории альфа-частиц Резерфорда лишь слегка изменялись бы после вылета из пудинга. Между тем большинство альфа-частиц проходили сквозь фольгу как ни в чем не бывало, однако некоторые из них отлетали обратно, как будто налетали на что-то твердое. Вот как писал об этом сам Резерфорд:

Со мной никогда в жизни не происходило событий столь невероятных. Так же невероятно было бы, если бы вы выстрелили пятнадцатидюймовым снарядом в папиросную бумагу, а он отскочил бы в вас обратно!

Большинство альфа-частиц проходили сквозь фольгу. Лишь очень редко случалось так, что частица налетала на ядро золота. Иначе говоря, колоссальное большинство массы атома было сосредоточено в крошечной доле общего объема. Сливы налицо, а пудинга нет.

Наверное, вы думаете, что ваша рука плотная и набита веществом, однако по большей части она состоит из пустоты. Нужно увеличить изображение в 100 000 раз по сравнению с размером самого атома (до 10–15 метра) — и лишь тогда мы увидим ядра атомов, и лишь тогда поймем, как пусто и никчемно наше существование.

Ядро составляет около 99,95 % массы атома, однако занимает всего лишь примерно одну квадрильонную общего объема. Это как будто скромное офисное здание по сравнению со всем земным шаром. Вероятность попадания альфа-частицы в ядро в эксперименте Резерфорда примерно эквивалентна вероятности случайного попадания метеорита в Белый дом[12]. Большинство угодит мимо цели.

А мы можем еще сильнее углубиться в недра ядра — и там мы обнаружим протоны (положительно заряженные) и нейтроны (нейтральные, что явствует из названия). Количество протонов определяет, о каком именно химическом элементе идет речь. У водорода один протон, у гелия — два, у лития — три и т. д. Если вы забыли, который элемент какой, посмотрите в волшебную таблицу Менделеева. Нейтроны, со своей стороны, не влияют на химическую бухгалтерию — разные их количества обозначают лишь разные изотопы одного и того же элемента.

К тому же мы до сих пор пополняем свой арсенал новыми элементами. В 2006 году российские и американские ученые совместно открыли 118‑й элемент унуноктий. Когда я говорю «открыли», то имею в виду, что они создали его в лаборатории, что в данном случае означает со всего размаху столкнуть кальций с калифорнием (который тоже сначала нужно сделать в лаборатории). В результате получилось всего три атома, и просуществовали 12 Скорее всего, из фильмов о вторжении инопланетян вы почерпнули несколько искаженное представление о том, насколько это вероятно.

они ничтожную долю мгновения. Беда в том, что массивные ядра вроде унинокция (почти в 300 раз тяжелее обычного водорода) обычно бывают крайне нестабильны. Они стремятся как можно скорее распасться на более легкие частицы. Унуноктий живет всего лишь около миллисекунды, а следовательно, едва ли удастся обнаружить его залежи.

Радиоактивный распад — всего лишь привычный факт в жизни субатомного мира, и эти слова, вероятно, приводят на ум малоприятные вещества вроде плутония и урана. А чтобы понять, почему эти элементы такие неприятные, мы оторвемся от микроскопа и сделаем краткое отступление в сторону самых знаменитых физических формул.

Как сделать что-то из ничего?

Даже если вы терпеть не могли школьные уроки физики, даже если у вас от математики по всему телу идут волдыри, я готов спорить, что эту формулу вы уже знаете — хотя бы понаслышке:

E=mc²

Помните Чудесный год Эйнштейна — 1905 год? Это уравнение — жемчужина его специальной теории относительности, формула, лежащая в основе атомной энергетики и определяющая жизнь нашего Солнца. А также поведение вещества, из которого вы состоите.

Что такое масса и энергия (соответственно m и E), всем более или менее понятно. Соединяет их c, скорость света и абсолютный предел скорости во вселенной.

Честно говоря, название «скорость света» не очень-то удачное, поскольку со скоростью с перемещается любая частица, лишенная массы. В том числе, конечно, и фотон, частица света, но кроме фотона, есть еще по крайней мере несколько таких частиц. Например, глюоны — частицы, отвечающие за то, чтобы скреплять ядра из протонов.

У фотонов с глюонами уйма общего. Физической вселенной управляют четыре фундаментальные силы, и у каждой из них есть по крайней мере одна частица-переносчик, своего рода субатомный посредник. Вот как действуют эти силы. Работа частицы-переносчика — субатомный аналог передачи записочки на уроке физкультуры, и, например, для электромагнетизма фотоны служат посредниками, которые сообщают одинаковым зарядам, что им положено отталкиваться, а противоположным — притягиваться. Глюоны играют ту же роль в сильном ядерном взаимодействии — самой мощной из всех фундаментальных сил. На другом полюсе находится гравитация: как ни странно, вопреки нашему повседневному опыту, это самая слабая из фундаментальных сил, и частица-переносчик у нее то ли есть, то ли нет. Мы заранее назвали ее гравитоном, поскольку было бы так красиво и элегантно, если бы гравитация была устроена так же, как и остальные три фундаментальные силы. Однако зарегистрировать гравитон нам пока не удалось.

Все эти частицы — фотоны, глюоны и гравитоны (если они существуют), лишены массы, а поэтому перемещаются со скоростью света. Поскольку вы, вероятно, состоите из массивных частиц, то навеки обречены перемещаться со скоростью меньше скорости света. Такова жизнь.

К счастью, в обыденной жизни соблюдать это ограничение не очень обременительно. Скорость света очень велика, примерно 300 000 километров в секунду или около миллиарда километров в час[13]. Земля перемещается со скоростью более 100 000 километров в час и обходит вокруг Солнца за год. Свету на такой же путь нужно всего лишь около 52 минут.

Уравнение Эйнштейна задает своего рода соотношение валютного курса массы и энергии. Вводишь какое-то количество массы, полностью уничтожаешь — и получаешь сколько-то энергии. Чтобы вы не думали, будто я задаром выдаю государственные тайны, поясню, что это легко сказать, но трудно сделать.

Для начала возьмите килограмм водорода, разогрейте примерно до 10 миллионов градусов по Кельвину[14] и плотно упакуйте. Готово! Вы восхитительны! Вы сделали себе ядерный реактор наподобие Солнца, способный превращать водород в гелий и некоторые другие частицы, гораздо более легкие.

Когда термоядерный синтез закончится, у вас будет 993 грамма конечного продукта, в основном — пепел, оставшийся после ядерных реакций. Так вот, вся магия происходит с 7 «исчезнувшими» граммами. Они превращаются в чистую энергию, и хотя кажется, будто это достаточно скудные дивиденды, с так огромна, что в результате высвобождается колоссальное количество энергии. Даже если коэффициент превращения составляет 0,7 %, Солнце будет гореть[15] около 10 миллиардов 13 Обозначение c — это первая буква слова celeritas, что значит «проворство». Мне кажется, это некоторое преуменьшение.

14 Шкала Кельвина начинается с абсолютного нуля, то есть с — 273 °C или — 460° F. Комнатная температура — около 310 К, а на поверхности Солнца примерно 5800 К.

15 Строгие ревнители возразят против такого использования слова «гореть». лет. Подобное же солнце на угле проработало бы сущую малость — какие-то 10 тысяч лет.