Выбрать главу

Рис. 24–19.Динамическая проверка диака.

24-4. Вопросы

1. Опишите установку переключателей и показания прибора при проверке КУВ с помощью прибора для проверки транзисторов. (Руководствуйтесь инструкцией по эксплуатации).

2. Опишите установку переключателей и показания прибора при проверке триака с помощью прибора для проверки транзисторов. (Руководствуйтесь инструкцией по эксплуатации).

3. Опишите процедуру проверки КУВ с помощью омметра.

4. Опишите процедуру проверки триака с помощью омметра.

5. Опишите процедуру проверки диака с помощью омметра.

РЕЗЮМЕ

• К тиристорам относятся КУВ (кремниевые управляемые вентили), триаки и диаки.

• КУВ управляют током, текущим в одном направлении, с помощью положительного сигнала на управляющем электроде.

• КУВ запираются при уменьшении напряжения анод-катод до нуля.

• КУВ могут быть использованы для управления током в цепях постоянного и переменного тока.

• Схематическим обозначением КУВ является:

• Триаки — это двунаправленные триодные тиристоры.

• Триаки могут управлять током, текущим в любом направлении, с помощью либо положительного, либо отрицательного сигнала на управляющем электроде.

• Схематическим обозначением триака является:

• КУВ могут управлять токами до 1400 ампер, а триаки — только до 25 ампер.

• КУВ имеют предельные напряжения до 2600 вольт, а триаки — только до 500 вольт.

• КУВ могут работать на частотах до 30000 герц, а триаки — на частотах до 400 герц.

• Поскольку триаки имеют несимметричные запускающие характеристики, для их запуска требуются диаки.

• Диаки — это двунаправленные запускающие диоды.

• Схематическим обозначением диака является:

 

• Диаки используются главным образом, как запускающие устройства для триаков.

• Тиристоры могут быть проверены с помощью специальных приборов для проверки транзисторов или с помощью омметров.

Глава 24. САМОПРОВЕРКА

1. В чем различие между диодом и КУВ?

2. Как влияет приложенное к аноду напряжение на ток, протекающий через открытый КУВ?

3. Как влияет сопротивление нагрузки на ток, текущий через КУВ?

4. Опишите процесс проверки КУВ.

5. Почему диак используется в цепи управляющего электрода триака?

Глава 25. Интегральные микросхемы

ЦЕЛИ

После изучения этой главы студент должен быть в состоянии:

• Объяснить важность интегральных микросхем.

• Перечислить преимущества и недостатки интегральных микросхем.

• Перечислить основные компоненты интегральной микросхемы.

• Описать четыре процесса, используемых при производстве интегральных микросхем.

• Перечислить основные типы корпусов интегральных микросхем.

• Перечислить семейства интегральных микросхем.

Применение транзисторов и других полупроводниковых устройств, благодаря их малым размерам и незначительному энергопотреблению, позволило существенно уменьшить размеры электронных цепей. В настоящее время стало возможным расширить этот принцип и рассматривать цепи как отдельные компоненты. Целью разработки интегральных микросхем является получение устройства, выполняющего определенную функцию, такую, как например, усиление или переключение, устраняющего разрыв между отдельными компонентами и цепями.

Интегральные микросхемы стали популярными благодаря нескольким факторам:

• Они надежны в сложных цепях.

• Они потребляют малую мощность.

• Они имеют малые размеры и вес.

• Они экономичны в производстве.

• Они предлагают новые и лучшие решения системных задач.

25-1. ВВЕДЕНИЕ В ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ

Интегральная микросхема (ИС) — это законченная электронная цепь в корпусе не большем, чем стандартный маломощный транзистор (рис. 25-1).

Рис. 25-1. Корпуса интегральных микросхем.

Цепь состоит из диодов, транзисторов, резисторов и конденсаторов. Интегральные микросхемы производятся по такой же технологии и из таких же материалов, которые используются при производстве транзисторов и других полупроводниковых устройств.

Наиболее очевидным преимуществом интегральной микросхемы является ее малый размер. Интегральная микросхема состоит из кристалла полупроводникового материала, размером примерно в один квадратный сантиметр. Благодаря малым размерам интегральные микросхемы находят широкое применение в военных и космических программах. Интегральная микросхема превратила калькулятор из настольного в ручной инструмент. Компьютерные системы, которые раньше занимали целые комнаты, теперь превратились в портативные модели благодаря интегральным микросхемам.