Выбрать главу

Система счисления — это не более, чем код. Для каждой отдельной величины существует приписанный ей символ. Когда код известен, можно выполнять вычисления. Это возможно с помощью арифметики и высшей математики.

Простейшей системой счисления является двоичная. Двоичная система содержит только две цифры — 0 и 1. Эти цифры имеют такое же значение, как и в десятичной системе счисления.

Двоичная система счисления используется в цифровых и микропроцессорных цепях благодаря ее простоте. Двоичные данные представляются двоичными цифрами, называемыми битами. Термин бит означает двоичная цифра (разряд) (binary digit).

31-1. ДВОИЧНЫЕ ЧИСЛА

Десятичная система счисления называется системой с основанием 10, поскольку она использует десять цифр от 0 до 9. Двоичная система — это система с основанием два, поскольку она использует две цифры, 0 и 1. Положение 0 или 1 в двоичном числе показывает их значение в числе и называется значением разряда или его весом. Значения разрядов двоичного числа увеличиваются как степени 2.

Счет в двоичной системе начинается с чисел 0 и 1. Как и в десятичной системе счисления, каждая двоичная цифра отличается от предыдущей на единицу. Сумма единицы и нуля дает единицу, а сумма двух единиц дает нуль, и при этом прибавляется единица в старшем разряде. На рис. 31-1 показана последовательность двоичных чисел, образованная по описанному алгоритму.

Рис. 31-1. Десятичные числа и эквивалентные двоичные числа.

Для определения наибольшего значения, которое может быть представлено данным количеством разрядов с основанием 2, используйте следующую формулу:

Наибольшее число = 2n — 1,

где n — число битов (или число использованных значений разрядов).

ПРИМЕР: два бита могут быть использованы для счета от 0 до 3, так как

2n - 1 = 22 - 1 = 4–1 = 3.

Четыре бита необходимы для счета от 0 до 15, так как

2n — 1 = 24 — 1 = 16 — 1 = 15.

31-1. Вопросы

1. В чем преимущество двоичной системы счисления перед десятичной при использовании в цифровых цепях?

2. Как определить наибольшее значение двоичного числа при заданном числе разрядов?

3. Каково наибольшее значение двоичного числа с:

а. 4 битами,

б. 8 битами,

в. 12 битами,

г. 16 битами.

31-2. ПРЕОБРАЗОВАНИЕ ДВОИЧНЫХ ЧИСЕЛ В ДЕСЯТИЧНЫЕ И НАОБОРОТ

Как установлено, двоичное число представляет собой число с весом каждого разряда. Значение двоичного числа может быть определено суммированием произведений каждой цифры на вес ее разряда. Метод вычисления двоичного числа показан на следующем примере:

ПРИМЕР: 

Число 45 является десятичным эквивалентом двоичного числа 101101.

Дробные числа также могут быть представлены в двоичной форме путем размещения двоичных цифр справа от двоичной запятой, так же как и десятичные цифры размещаются справа от десятичной запятой. Все цифры справа от запятой имеют вес, представленный отрицательными степенями 2 или дробными значениями разрядов.

Степень 2 ∙ Значение разряда

25 = 32

24 = 16

23 = 8

22 = 4

21 = 2

20 = 1

десятичная запятая

2-1 = 1/21 = 1/2 = 0,5

2-2 = 1/22 = 1/4 = 0,25

2-3 = 1/23 = 1/8 = 0,125

2-4 = 1/24 = 1/16 = 0,0625

ПРИМЕР: Определить десятичное значение двоичного числа 111011,011.

При работе с цифровым оборудованием часто бывает необходимо преобразовывать числа из двоичной системы в десятичную, и наоборот. Наиболее популярный способ преобразования десятичных чисел в двоичные — это последовательное деление десятичного числа на 2, с записью остатка после каждого деления. Остатки, взятые в обратном порядке, образуют двоичное число.