Выбрать главу

Точная оценка функциональной нагрузки усложняется, если не становится абсолютно невозможной, из-за соображений, которые нам позволила временно не принимать во внимание оговорка «при прочих равных условиях». Во-первых, функциональная нагрузка отдельного противопоставления между элементами выражения варьирует в зависимости от структурной позиции, занимаемой ими в слове. Например, два элемента могут часто противопоставляться в начале слова, но очень редко — в конце слова. Берем ли мы просто среднюю величину для всех позиций контраста? Ответ на этот вопрос не ясен.

Во-вторых, значение отдельного противопоставления между элементами выражения не есть просто функция от числа различаемых ими слов: оно также зависит от того, могут ли эти слова встречаться и контрастировать в одном и том же контексте. Возьмем предельный случай: если А и В — два класса слов, находящихся в дополнительной дистрибуции, и каждый член класса А отличается в субстанциальной реализации от какого-то члена класса В только тем, что в нем представлен элемент /а/ там, где в соответствующем слове из В представлен элемент /b/, то функциональная нагрузка контраста между /а/ и /b/ равна нулю. Таким образом, функциональную нагрузку отдельного противопоставления следует подсчитывать для слов, имеющих одну и ту же или частично совпадающую дистрибуцию. Ясно также, что всякий «реалистический» критерий оценки значения отдельного контраста должен учитывать не просто дистрибуцию слов, устанавливаемую грамматическими правилами, но реальные высказывания, которые можно было бы перепутать, если не сохранять этот контраст. Например, как часто или в каких обстоятельствах такое высказывание, как You'd better get a cab 'Вам лучше бы взять такси', можно было бы спутать с высказыванием You'd better get a cap 'Вам бы лучше получить кепку', если бы говорящий не различал конечных согласных слов cab и cap? Ответ на этот вопрос, очевидно, существен для любой точной оценки рассматриваемого контраста.

Наконец, значение отдельного контраста, по-видимому, связано с частотой его встречаемости (которая не обязательно определяется числом различаемых им слов). Допустим, что три элемента выражения — /х/, /у/ и /z/ — встречаются в одной и той же структурной позиции в словах одного дистрибутивного класса. Но предположим далее, что тогда как слова, в которых встречаются /х/ и /у/, часто противопоставлены в языке (это высокочастотные слова), слова, в которых встречается /z/, характеризуются низкой частотой появления (хотя они могут быть столь же многочисленны в словаре). Если носитель языка не будет владеть контрастом между /х/ и /z/, общение для него будет затруднено в меньшей степени, чем в том случае, если он не будет владеть контрастом между /х/ и /y/.

Функциональная нагрузка последнего контраста, ex hypothesi, выше, чем первого.

Соображения, высказанные в предыдущих параграфах, показывают, как трудно прийти к какому-либо точному критерию оценки функциональной нагрузки. Разнообразные критерии, предложенные лингвистами до сих пор, не могут претендовать на точность, несмотря на свою математическую изощренность. Тем не менее следует предусмотреть в нашей теории языковой структуры место для понятия функциональной нагрузки, несомненно весьма важного как в синхроническом, так и в диахроническом плане. Очевидно, все же имеет смысл говорить о том, что определенные противопоставления несут более высокую функциональную нагрузку, чем какие-то другие, даже если соответствующие различия не поддаются точному измерению. 

(обратно)

2.4.2. КОЛИЧЕСТВО ИНФОРМАЦИИ И ВЕРОЯТНОСТЬ ПОЯВЛЕНИЯ *

Другое важное статистическое понятие связано с количеством информации, которую несет языковая единица в некотором данном контексте; оно также определяется частотой появления в этом контексте (во всяком случае, так обычно считается). Термин «информация» употребляется здесь в особом значении, которое он приобрел в теории связи и которое мы сейчас поясним. Информационное содержание отдельной единицы определяется как функция от ее вероятности. Возьмем для начала самый простой случай: если вероятности появления двух или более единиц в некотором данном контексте равны, каждая из них несет в этом контексте одно и то же количество информации. Вероятность связана с частотой следующим образом. Если две, и только две, равновероятные единицы — х и у — могут встретиться в рассматриваемом контексте, каждая из них встречается (в среднем) ровно в половине всех соответствующих случаев: вероятность каждой, a priori, равна 1/2. Обозначим вероятность отдельной единицы х через рх. Итак, в данном случае рх = 1/2 и ру = 1/2. В более общем виде вероятность каждой из n равновероятных единиц (x1, х2, х3, . . ., хn) равна 1/n. (Заметим, что сумма вероятностей всего множества единиц равна 1. Это справедливо независимо от более частного условия равной вероятности. Особым случаем вероятности является «достоверность». Вероятность появления единиц, которые не могут не появиться в данном контексте, равна 1.) Если единицы равновероятны, каждая из них несет одно и то же количество информации.