Выбрать главу

Рис. 31. Схема устройства атомной бомбы.

Атомная бомба, как мы уже указывали, основана на превращении тяжелых элементов в более легкие элементы, идущем с выделением энергии.

В основе водородной бомбы лежит соединение легких элементов с образованием более тяжелых. Известно применение для этой цели изотопа водорода — тяжелого водорода — дейтерия и сверхтяжелого водорода — трития. При их взаимодействии образуется гелий, причем выделяется огромное количество энергии: на килограмм трития в 7 раз больше, чем при распаде килограмма урана.

Тяжелый водород, масса ядра которого вдвое больше массы ядра обычного водорода, получается из тяжелой воды, содержащейся в обычной воде в количестве двух сотых процента. Тритий получается искусственным путем при действии нейтронов на литий.

Главная трудность при осуществлении водородного взрыва заключается в его возбуждении. Мы видели, что и некоторые обычные вторичные взрывчатые вещества нелегко взорвать — для этого нужен удар большой силы, создаваемый взрывом инициирующего взрывчатого вещества.

Чтобы вызвать реакцию соединения ядер тяжелого водорода с образованием гелия, нужна крайне высокая температура. До осуществления атомного взрыва такая температура на земле была недостижимой. Атомный взрыв и оказался своего рода инициатором для возбуждения водородного взрыва. Атомный заряд, дающий при взрыве температуру в миллионы градусов, способен вызывать взрывную термоядерную реакцию в окружающей этот заряд смеси тяжелого и сверхтяжелого водорода.

Величина заряда атомной бомбы ограничивается тем обстоятельством, что масса каждой из частей радиоактивного вещества, составляющих атомный заряд, не может превосходить критическую.

У водородною заряда это ограничение отсутствует, и величина заряда и сила взрыва водородной бомбы по этой причине могут быть гораздо больше, чем атомной.

Принципиальная схема устройства водородной бомбы изображена на рисунке 32.

Рис. 32. Схема устройства водородной бомбы.

Взрыв заряда обычного взрывчатого вещества сближает части атомного заряда и приводит к атомному взрыву. Под действием разогрева, вызванного атомным взрывом, тяжелый и сверхтяжелый водород вступают в реакцию друг с другом.

Действие водородной бомбы чрезвычайно сильное и во много раз превосходит действие атомной бомбы. По данным иностранной печати, в одном из первых наземных водородных взрывов наблюдалось образование воронки диаметром свыше полутора километров и глубиной более 50 метров. По-видимому, в современной водородной бомбе достигнут предел разрушительного действия применительно к обычным постройкам городского и сельского типа в том смысле, что дальнейшее увеличение заряда этой бомбы идет на усиление ее действия в вертикальном направлении, то есть вверх и вниз, и не приводит поэтому к увеличению площади разрушений. По этой же причине площадь разрушений от взрыва атомной бомбы получается больше, если она взрывается в воздухе на некоторой высоте, а не на земле. В последнем случае много энергии расходуется на ненужное расплавление земли и стен зданий в месте взрыва. Понятно, что сказанное не относится к сооружениям повышенной прочности или расположенным на большой глубине в земле.

Мы рассмотрели физические основы получения атомной энергии и осуществления взрывного ее использования. Какова же внешняя картина атомного взрыва, как он действует, что общего в действии атомного взрыва с взрывом обычных взрывчатых веществ и чем он от этого взрыва отличается?

Первое, что наблюдается при взрыве атомной бомбы в воздухе, это ослепительная вспышка, озаряющая небо и местность на десятки километров от места взрыва и видимая на расстоянии более 100 километров. Вслед за вспышкой появляется яркий огненный шар диаметром до нескольких сотен метров.

Через некоторое время, зависящее, как и при ударе молнии, от расстояния до места взрыва, раздается громоподобный мощный звук, слышимый на расстоянии нескольких десятков километров.

Огненный шар, быстро увеличиваясь в размерах, поднимается кверху и, остывая, превращается в клубящееся облако, которое соединяется с пылевым столбом, поднимающимся с земли, принимая при этом грибовидную форму (рис. 33).