Выбрать главу

Мистика, да и только!

Впрочем, так ли уж это мистично? В каждом тяжелом ядре происходит противоборство сил, стремящихся, с одной стороны, разрушить ядро, а с другой — сохранить. Эти силы — кулоновская сила отталкивания и ядерная сила сцепления — громадны, а разница между ними, дающая возможность либо погубить ядро, либо сохранить его, ничтожна. Если угодно — капля, то ли переполняющая, то ли не дополняющая чашу, всего-то! «Магическое» число протонов и нейтронов и можно считать «каплей», стабилизирующей ядро.

Известный американский физик Ричард Фейнман однажды сказал, что понять — значит привыкнуть и научиться использовать. К странному ряду чисел со временем привыкли, дали им официальное имя «магических», а затем подумали, как бы ими воспользоваться. Прежде всего решили узнать, в какой степени и одинаково ли стабильны ядра, составленные из магического числа протонов и нейтронов. Оказалось — не Одинаково. Самыми стабильными, а практически вечными, были такие, в которых и количество нейтронов, и количество протонов равнялось магическому числу. Их было не много. Например, кислород — 8 и 8, кальций — 20 и 20, свинец — 82 и 126. Всем этим ядрам дали название «двойные маги» и с сожалением констатировали, что трансураны приходятся как раз на область, весьма отдаленную от ближайшего к ним «двойного мага» — свинца, и чем дальше от него, тем меньшей становится их жизнеспособность, тем трудней находить их в природе и синтезировать.

Вопрос, таким образом, упирался уже не в то, есть 106-й элемент или его нет, а где находится «конец жизни» ядерной материи. Получалось, что смысла синтезировать ядра за пределами 106-го вроде бы не было.

Ужасно безысходно, не правда ли?

Общая картина, как понимает читатель, выглядела пессимистично. Дело, разумеется, было не в том, что ляровцы боялись остаться «без работы», и не в том, что море нестабильности, лишенное берегов, могло восприниматься ими как чрезвычайно унылая картина.

Научное воображение физиков не пострадало бы и в том случае, если бы удалось доказать наличие стабильности, и в том, если бы кто-то доказал, что стабильность отсутствует.

Мучила неопределенность.

И вот тут-то теоретики, от которых с таким нетерпением ждали вестей, обратились сами к себе с внешне наивным и одновременно замечательным вопросом: а почему бы не предположить, что в районе следующего магического числа, стоящего за 82, не обнаружится стабильность? Этим следующим числом было 126: именно такое количество нейтронов в свинце делало его «двойным магом», а практическая «вечность» свинца делала цифру 126 магической. Увы, элемента со 126-ю протонами пока еще никто «в глаза» не видел: таблица Менделеева заполнена сегодня, как мы знаем, всего лишь до 105-й клетки. Ну что ж, уважаемые экспериментаторы, как бы сказали теоретики, давайте пробуйте синтезировать! Подтверждайте нашу гипотезу или опровергайте ее! Дело за вами! А вдруг?!

Но нет, не говорили так теоретики, это было бы слишком просто, и ляровцев подобная «карта» не устраивала, тем более, что они сами догадывались: в районе 126-го элемента может оказаться «остров стабильности». Это предсказание мало чего стоило, потому что не содержало ответа на самый важный вопрос: как поведет себя элемент в связи со спонтанным, то есть самопроизвольным, делением? Ну, предположим, удастся синтезировать 126-й, у которого 126 протонов и, предположим, 184 нейтрона, — вы думаете, это будет «двойной маг», вечный и стабильный? Ничуть! Он может легко развалиться, как разваливаются железные гантели, когда ими забивают гвозди. Чтобы выяснить, насколько 126-й стабилен к различным типам распада, в том числе спонтанного, чтобы определить, как этот элемент — и другие подобные ему «маги» — поведут себя, столкнувшись с делением вне всяких норм и правил, надо заранее изучить свойства и качества всех известных до настоящего времени трансуранов.

«Всех известных»! — да много ли их? В этом смысле «материала» у теоретиков было чуть-чуть, всего лишь два десятка изотопов от 100-го до 105-го элементов. Между тем чем ближе к барьеру стабильности — ну хоть бы еще 106-й, 107-й и 108-й элементы! — тем вернее был бы прогноз относительно 126-го!

Не буду утомлять читателя излишними подробностями, скажу главное: советский физик-теоретик Вилен Митрофанович Струтинский все же дал экспериментаторам «карту» в руки. Он выдвинул такую гипотезу; надо исходить из того, что стабильность связана с внутренними свойствами ядер, которые не одинаковы даже у соседних изотопов одного и того же элемента. Особенность свойств такова, что ядро, оказавшись на пределе стабильности, то есть в экстремальном состоянии, способно мобилизовать все свои силы во имя сохранения жизни материи. Здесь вполне допустима — разумеется, весьма условная — аналогия с людьми: попав в стрессовое состояние, человек обнаруживает у себя замечательные способности быстро бегать, далеко прыгать, поднимать невероятные тяжести и так далее, чтобы ликвидировать угрозу смерти.