Кроме того, физические измерения с такой степенью точности вряд ли могут оказаться очень быстрыми. Аналоговые устройства принципиально не способны обеспечить скорость вычислений, достаточную для проведения наиболее точных и сложных из тех расчетов, необходимость в которых возникает в современной науке и технике. Поэтому мне кажется, что наивысший расцвет использования устройств такого рода сейчас уже позади.
Что же касается цифровых машин, то мне пришлось углубиться в изучение самих принципов их работы. В обычном настольном арифмометре принцип работы заключается в том, что в зависимости от положения одних колес определяется положение некоторых других. Каждое из таких положений выбирается из числа десяти возможных, отличающихся величиной угла поворота относительно некоторого «начального положения». Эти десять положений нетрудно задать с помощью десяти зубцов. Однако при использовании металлических колес мы сталкиваемся со сложными проблемами преодоления инерции и сил трения, существенно ограничивающих возможности наших машин.
Со всех точек зрения казалось желательным заменить механическую систему выбора, осуществляемую в старых цифровых машинах, электронной. Можно было ожидать, что в результате такой замены новые машины окажутся по крайней мере в двух отношениях более совершенными, чем старые. Во-первых, инерция потока электронов значительно меньше инерции любой механической системы, и, во-вторых, в электрических цепях технически гораздо легче с помощью усилителей бороться с потерями энергии, вызываемыми процессами типа трения (например, выделением тепла в сопротивлениях). По этим причинам я был абсолютно уверен в том, что быстродействующие вычислительные машины недалекого будущего будут электронными и цифровыми. Надо, однако, сказать, что в то время такие идеи стали уже довольно часто встречаться в научной литературе, так что здесь моя точка зрения была лишь одним из проявлений духа эпохи.
Как я уже сказал, в десятичных цифровых машинах в качестве основной логической операции используется выбор из десяти различных возможностей, в то время как в двоичной машине такую же роль играет выбор из двух возможностей. Повсеместное использование десятичной системы счисления, по-видимому, объясняется просто тем, что десять — это число пальцев на наших руках. Некоторые народности, например индейцы майя, вероятно, использовали для счета пальцы рук и ног и поэтому пришли к двадцатеричной системе счисления. Любопытно отметить, что если бы люди не отличались от героев мультфильмов Уолта Диснея, т. е. имели бы всего по четыре пальца на каждой руке, то, по-видимому, у нас была бы распространена восьмеричная система счисления, лишь незначительно отличающаяся от двоичной (так как 8 = 2 × 2 × 2).
Тем не менее можно считать, что нам повезло, так как десятичная система счисления хотя и не является самой удобной, но все же много удобнее, чем, скажем, тринадцатеричная. В самом деле, в вычислительных машинах, основанных на десятичной системе, используются колеса с десятью зубцами, расположенными на одинаковых расстояниях друг от друга. Для создания таких колес надо уметь строить правильные десятиугольники, т. е. правильные многоугольники с десятью вершинами. Эта задача планиметрии неизмеримо более проста, чем задача построения правильного многоугольника с тринадцатью сторонами.
Однако при использовании электронных схем устройства, заменяющие колеса в механических счетных машинах, не зависят уже от законов планиметрии и здесь выбор из десяти равноправных возможностей моделируется не так легко. Наиболее естественным в электронных схемах оказался выбор одного из двух возможных исходов.
Схемы с двумя различными состояниями устойчивого равновесия были известны уже давно и получили название триггерных. Единственная возможность для построения схемы с десятью различными состояниями заключается, по-видимому, в использовании комбинации из нескольких таких триггерных схем. По самому принципу работы триггера число различных состояний сложной триггерной схемы определяется числом различных комбинаций состояний каждого из триггеров, и это число должно быть степенью двух. Поэтому естественный способ построения схемы с десятью устойчивыми состояниями заключается в использовании схемы с шестнадцатью состояниями, шесть из которых не употребляются.