На несколько лет Биглоу переключился на выхаживание безнадежно старых и дряхлых автомобилей. Для обычного автомобилиста машина является просто средством передвижения, позволяющим ему добираться туда, куда хочется, но для истинного любителя каждая новая машина — это вызов его способностям к преодолению трудностей. Инженер такого типа никогда не удовлетворится обычной машиной. Либо он постарается сделать свою машину лучшей в мире, либо употребит всю свою изобретательность для того, чтобы заставить работать машину, место которой уже давно на свалке металлолома. Если вы пускаетесь в путь с таким любителем за рулем, то можете не опасаться никаких серьезных происшествий, но без приключений вам никогда не обойтись. Помню, однажды фон Нейман хотел поговорить с Биглоу, которым он интересовался как одним из возможных участников работы по созданию быстродействующих вычислительных машин. Из Принстона мы позвонили в Нью-Йорк, и Биглоу согласился приехать к нам на своей машине. Мы подождали до назначенного часа, но Биглоу не появился; не приехал он и еще через час. И только потеряв всякую надежду, мы услышали пыхтение древней машины. Это Биглоу, наконец, добрался к нам буквально на последнем такте мотора машины, которая в других руках остановилась бы уже много месяцев тому назад.
Мы с Биглоу вначале попытались определить границы применимости нашего метода прогнозирования, так как заранее почти с полной уверенностью можно было предположить, что возможности этого метода довольно ограничены. На этот раз, вместо того чтобы испытывать нашу систему прогнозирования на гладких кривых, мы решили испытать ее на кривой, состоящей из двух прямых, образующих угол.
Следует сказать, что прибор для прогнозирования состоял из двух блоков, одного, который все время следил за данной кривой, и другого, который на основе полученной информации о поведении кривой в прошлом устанавливал, как будет выглядеть эта кривая через некоторое время в будущем. Когда мы испытывали прибор не на гладкой кривой, а на кривой, в которой за одним отрезком прямой следует другой, наклоненный под определенным углом к первому, мы обнаружили, что система по-прежнему работает, но чрезвычайно странным образом.
Удивительным, волнующим и, по правде говоря, неожиданным было то, что прибор, сконструированный для наилучшего слежения за гладкой кривой, оказался слишком чувствительным для угловых точек. При переходе через такую точку в нем возникали сильнейшие автоколебания. Мы несколько раз исследовали это явление и каждый раз получали одни и те же результаты. Отсюда было уже недалеко до мысли о том, что встретившееся нам явление заложено в порядке вещей и его невозможно изменить. Но это значит, что в самой природе процесса прогнозирования заложено то, что приборы, рассчитанные на точное слежение за гладкими кривыми, оказываются чрезмерно чувствительными в применении к ломаным. По-видимому, здесь мы еще раз сталкиваемся с тем же противодействием природы, которое проявляется в принципе неопределенности Гейзенберга, согласно которому нельзя одновременно точно определить, где находится частица и с какой скоростью она при этом движется.
Чем больше мы изучали возникшую задачу, тем больше убеждались в том, что мы правы и что встретившаяся нам трудность является принципиальной. Но если уж мы не могли достигнуть того, к чему стремились (впрочем, без особой надежды на удачу), т. е. построить идеальную систему прогнозирования, годную во всех случаях, нам оставалось по одежке протягивать ножки и попытаться разработать такую систему прогнозирования, которая была бы наилучшей среди всех, не противоречащих законам математики. При этом было необходимо ответить на один важный вопрос: что следует понимать под наилучшей системой прогнозирования? Уменьшение ошибки слежения за гладкой кривой ведет к увеличению ошибок, связанных с излишней чувствительностью следящей системы при слежении за ломаной. Чем же следует руководствоваться в поисках компромисса между ошибками этих двух типов?
Ответ на этот вопрос заключается в том, что при выработке разумного компромисса можно руководствоваться только статистическими представлениями. Зная статистическое распределение кривых, которые нам надо экстраполировать, т. е., например, зная статистическое распределение путей самолетов, по которым ведется стрельба, можно искать такой метод прогнозирования, при котором некоторая величина, характеризующая ошибку, принимает наименьшее значение. Наиболее естественной величиной, с которой мы и начали (руководствуясь в первую очередь надеждой на простоту соответствующих расчетов, а не на то, что полученные при этом результаты будут иметь особенно большое военное значение), является средний квадрат ошибки прогнозирования.