Выбрать главу

Поток, напоминающий поток жидкости, о котором мы упоминали выше, можно рассматривать как поток вероятностей; именно так его и интерпретировал Гиббс. Вероятность того, что частица в определенный момент времени попадет в определенную область этого странного пространства, оказывается равной вероятности того, что она через некоторое время попадет в другую область, а именно в ту, в которую в процессе своего движения перейдет исходная область.

Типичные уравнения, описывающие такой поток, уже не принадлежат к классу так называемых обыкновенных дифференциальных уравнений, а являются интегральными. Эти интегральные уравнения связывают распределения вероятностей в прошлом с распределениями вероятностей в будущем. Получаемая связь оказывается при этом такой, что если в начальный момент времени мы будем иметь сумму нескольких разных распределений, то и в будущие моменты времени получим распределение вероятностей, являющееся суммой распределений, получаемых из каждого из тех, которые имелись вначале. Подобная система, реакция которой на сумму входных воздействий оказывается равной сумме реакций на отдельные воздействия, называется линейной. Соответственно этому и интегральные уравнения потока, описывающего динамику всевозможных аналогичных систем, также надо считать линейными.

Описанный метод весьма удобен для практических расчетов; в случае же очень сложных задач он часто оказывается гораздо более простым, чем классический метод Ньютона. В несколько упрощенном виде этот метод сейчас широко практикуется некоторыми сотрудниками технического отделения МТИ.

Кроме достоинств, связанных с простотой расчета более сложных задач, этот метод по сравнению с ньютоновским имеет принципиальное преимущество с логической точки зрения. Ведь на самом деле уменьшение точности конечных результатов объясняется вовсе не одной только неточностью уравнений и неточностью определения начальных условий; вообще все имеющиеся у нас данные содержат принципиальную неточность. Поэтому бессмысленно сначала получать результат с искусственно повышенной точностью, а затем специально изучать ошибки при расчете, с тем чтобы выяснить его реальную точность. Мы можем с самого начала выложить все наши карты на стол; в конце концов при этом мы получим ровно то, что нам нужно, не больше и не меньше. Такой подход не только позволяет сэкономить много ненужных усилий, но и приводит к повышению реальной точности расчетов.

Никакие физические измерения не являются абсолютно точными, и уже поэтому все теоретические расчеты, основывающиеся на неточных данных, также приводят к неточным результатам. Классическая ньютоновская физика приписывает неточным данным точность, которой они не обладают, определяет по этим данным решение задачи, а затем понижает точность этого решения с помощью учета неточности исходных данных. В современной физике, в отличие от ньютоновского подхода, при использовании неточных данных ученые стремятся с самого начала учитывать истинную точность наблюдений, не стараясь ни на одном этапе вычислений получить большую точность, чем та, которая на самом деле является реальной.

Если бы при решении таких задач с неточными данными мы воспользовались методом, которым пользуется астроном, определяя орбиты планет, то вполне могло бы оказаться, что мы выбрали такие начальные условия, которые приводят к результатам, не типичным для более широкого круга начальных условий, с которыми мы на самом деле сталкиваемся в исследуемой задаче. Такая нестабильность траектории может привести к неверному представлению о возможной ошибке в конечных результатах.

Как я уже говорил раньше, рассказывая о моей работе по теории прогнозирования, наиболее чувствительные из наших приборов оказываются и самыми неустойчивыми. Неустойчивость же приводит к ошибкам, вообще говоря, отличающимся от ошибок, связанных с неточностью прибора, но не менее серьезным. То, что я говорил о физических приборах, справедливо и относительно вычислительных методов. Компромисс между ошибками, связанными с неточностью данных, и ошибками, связанными с неустойчивостью методов, можно найти только на основе статистических рассмотрений. Почему же тогда нельзя встать на статистическую точку зрения с самого начала и вычислять одновременно как средний результат, так и ошибку этого результата с единой точки зрения? И если такое признание статистической природы науки уже сейчас принесло большую пользу во многих технических задачах ньютоновского типа, то во сколько же раз эта польза будет больше при таком подходе к решению задач, в которых ошибки наблюдения обычно очень велики!