Выбрать главу
Матрица из оптических транзисторов и вынесенная отдельно сверхрешетка

Структура трансфазора может быть вмонтирована в структуру транзистора. В итоге получаем конструкцию, состоящую из областей «дырочной» (p–тип), собственной (i–тип) и электронной (n–тип) проводимостей. Если на нее спроецировать некий информационный массив, например снимок из космоса, то его можно обрабатывать не последовательно по точкам, а весь сразу!

Достижения оптоэлектроники

Есть несколько путей эволюции оптических компьютеров. Первый, наиболее простой, – развитие оптической элементной базы по аналогии с электронной и замена электронных схем оптическими. Он даст некоторый выигрыш в быстродействии и надежности, однако повторит недостатки традиционной схемотехники и не решит задачу обработки больших массивов информации в реальном масштабе времени. С такой задачей могут справиться аналоговые оптические машины, но их собрать сложнее, да и обойдутся они дороже. Это второй путь. Третий же – комбинация методов аналоговой и цифровой обработки информации. Такие гибридные вычислительные машины должны сочетать гибкость и универсальность электронных и производительность оптических.

Созданием и совершенствованием ОВМ занимается оптоэлектроника – новое направление науки и техники, использующее для генерации, передачи, приема, преобразования, запоминания и хранения информации фотоны вместо электронов. Впервые об этом научном направлении всерьез заговорили всего лишь 30–35 лет назад, хотя сама по себе оптоэлектроника опирается на многие фундаментальные физические открытия еще столетней, а то и многовековой давности.

Так как оптические транзисторы не только способны переключаться всего за одну пикосекунду (одну тысячную миллиардной доли секунды!), но и могут одновременно осуществлять сразу несколько параллельных переключений, появились и первые оптические процессоры, обладающие колоссальными возможностями. Скажем, в Калифорнийском технологическом институте (США) создано экспериментальное ассоциативное запоминающее устройство, способное считывать изображения с фотопленки. Оптический прибор, разработанный фирмой «Хьюз Эйркрафт» (штат Калифорния, США), способен считывать информацию с голограмм, а в Пенсильванском университете – придумано устройство на оптических элементах, которое обеспечивает распознавание воздушных целей, используя лишь 10% информации, содержащейся в радиолокационном сигнале.

Оптический суперкомпьютер

Наряду с развитием оптоэлектроники, продолжает развиваться быстрыми темпами и фотоника – отрасль науки, занимающаяся передачей и преобразованием света в различных устройствах и системах. Одним из практических результатов развития этой науки стало широкое использование лазеров различного назначения, являющихся сегодня одним из наиболее удобных генераторов для тех же ОВМ.

Другим практическим внедрением результатов фотоники стала оптоволоконная техника. Например, в Великобритании, США, Японии, России и некоторых других странах уже появились первые сети связи на оптических кабелях. Они обеспечивают скорость передачи информации в 1200 млн битов в секунду.

Практическим результатом внедрения фотоники можно считать появление цифровой записи аудио– и видеоинформации на оптических дисках, а также оптических запоминающих устройств, намного превосходящих по своим возможностям магнитные диски.

А как же создание самих ОВМ? Оно уже тоже не за горами, считают, например, А. Эйбрехем, К. Ситон, С. Смит и другие американские специалисты в этой области.

Несколько лет назад компания «Белл Лабораториз» объявила о создании первого в мире оптического процессора на мезоструктурах С–СИД. Эго сокращение после расшифровки и перевода означает «симметричное устройство со свойством самогенерируемого электрооптического эффекта».

Экспериментальный процессор использует пока лишь крохотную долю своих возможностей по обработке информации. Алан Хуанг, руководитель группы, создавшей первый в мире оптический компьютерный процессор, считает, что настоящий оптический компьютер будет создан лет через 5–10. Он станет совершать десятки триллионов операций в секунду.

Основной рабочий элемент С–СИД – это так называемый квантовый мультикарман. Он представляет собой многослойный «сэндвич» – 121 слой из арсенида галлия и арсенида галлия с алюминием попеременно. Сегодня на изготовление пластины С–СИД уходит несколько часов, намного больше, чем на изготовление кремниевых пластин. Но технология все усовершенствуется и дешевеет. Так что появление оптических компьютеров уже не за горами. Прототипы их уже созданы.