Выбрать главу

А что происходит в анодной цепи анода, когда в ней действует переменное напряжение?

Обратимся к рис. 218.

Рис. 218. Диод выпрямляет переменный ток

Здесь, как и в предыдущем примере, катод диода накаляется током батареи GBн. На анод лампы подается переменное напряжение, источником которого служит вторичная (II) обмотка сетевого трансформатора Т. В этом случае напряжение на аноде периодически изменяется по значению и знаку (рис. 218, а). А так как диод обладает односторонней электропроводностью, ток через него идет только при положительном напряжении на его аноде. Говоря иными словами, диод пропускает положительные полуволны (рис. 218, б) и не пропускает отрицательных полуволны переменного тока.

В результате в анодной цепи течет ток одного направления, но пульсирующий с частотой переменного напряжения на аноде. Происходит выпрямление переменного тока — явление, знакомое тебе по работе полупроводникового диода.

Если в анодную цепь включить нагрузочный резистор Rн, через него также будет течь выпрямленный диодом ток. При этом на выводе резистора, соединенном с катодом, будет плюс, а на другом выводе — минус выпрямленного напряжения. Это напряжение, создающееся на резисторе, может быть сглажено фильтром выпрямителя и подано в другую цепь, для питания которой необходим постоянный ток.

Лампы, предназначаемые для работы в выпрямителях, называют кенотронами.

Двухэлектродные лампы можно использовать не только для выпрямления переменного тока, но и для детектирования модулирования колебаний РЧ.

ТРИОД И ЕГО СВОЙСТВА

А теперь воспользуемся нашим самодельным диодом и поместим между его катодом и анодом сетку примерно в том виде, какой она была в первых конструкциях радиоламп (рис. 219). Получится триод. Присоединим к его электродам накальную и анодную батареи. В анодную цепь включим миллиамперметр, чтобы следить за всеми изменениями тока в этой цепи.

Рис. 219. Действие трехэлектродной лампы

Сетку временно соединим проводником с катодом (рис. 219, а). В этом случае сетка, имея нулевое напряжение относительно катода, почти не оказывает влияния на анодный ток; анодный ток будет таким же, как в опыте с диодом. Удалим проводник, замыкающий сетку на катод, и включим между ними батарею с небольшим напряжением, но так, чтобы ее отрицательный полюс был соединен с катодом, а положительный — с сеткой (рис. 219, б). Эту батарею назовем сеточной и обозначим GBC. Теперь сетка находится под положительным напряжением относительно катода. Она стала как бы вторым анодом. Образовалась новая цепь — сеточная, состоящая из участка сетка-катод, батареи GBC и соединительного провода. Имея положительный заряд, сетка притягивает к себе электроны. Но набравшие скорость электроны будут перехвачены силой притяжения более высокого, чем на сетке, анодного напряжения. В результате анодный ток станет больше, чем тогда, когда сетка была соединена с катодом. Такой же прирост анодного тока можно было бы получить за счет повышения анодного напряжения, но для этого пришлось бы в анодную батарею добавить в несколько раз больше элементов, чем имеет сеточная батарея.

Если добавить к сеточной батарее еще два-три элемента и тем самым увеличить напряжение на сетке, анодный ток еще больше возрастет. Значит, положительное напряжение на сетке помогает аноду притягивать электроны, способствует росту анодного тока. При этом некоторая часть электронов оседает и на сетке. Но они сразу же «стекают» через сеточную батарею на катод, Появляется небольшой сеточный ток — ток сетки.

С повышением положительного напряжения на сетке увеличивается анодный ток лампы, но одновременно растет и ток сетки. Может случиться, что при некотором довольно большом напряжении на сетке ток в ее цепи станет больше анодного. Это объясняется тем, что сетка, находясь ближе к катоду, притягивает к себе электроны сильнее, чем удаленный анод. В этом случае вылетевшие из катода электроны так разделятся между сеткой и анодом, что большая часть их придется на долю сетки. Такое явление крайне нежелательно для работы лампы — она может испортиться из-за перегрева сетки.