Выбрать главу

Тетроды позволили повысить качество аппаратуры при использовании меньшего числа радиоламп. Однако наряду с достоинствами, у тетродов более ярко, чем у триодов, стал проявляться другой весьма существенный недостаток — динатронный эффект. Прежде чем разобраться в этом неприятном для работы лампы явлении, проведи такой опыт. В блюдце, наполненное водой, пусти с высоты каплю воды. Что получится. Ударившись о поверхность воды, капля выбьет из нее одну-две капли. Чем с большей высоты будешь пускать каплю, тем больше будет ее энергия полета, тем больше капель выбьет она из воды, находящейся в блюдце.

Нечто подобное происходит в лампе-тетроде. В ней скорость полета электронов огромна. Они как бы бомбардируют анод. При этом каждый электрон способен выбить из анода по два-три и больше электронов. Эти вторичные электроны устремляются к экранирующей сетке, и внутри лампы создается встречный поток электронов, нарушающий процесс усиления. Для борьбы с этим явлением между анодом и экранирующей сеткой ввели третью сетку.

Лампа стала пятиэлектродной — пентодом (рис. 222, б). Эту сетку, названную защитной (или противодинатронной), соединяют с катодом внутри лампы, или это соединение делают на ламповой панельке. Защитная сетка, имея потенциал катода, т. е. отрицательный относительно анода, возвращает вторичные электроны к аноду. Что же касается прямого потока электронов, то защитная сетка почти не оказывает ему препятствия.

По своим усилительным свойствам пентод лучше триода и тетрода.

Рис. 222. Тетрод (а), пентод (б) и лучевой тетрод (в)

К числу многоэлектронных ламп относятся и так называемые лучевые тетроды (рис. 222, в). Это тоже пятиэлектродные лампы, но у них витки экранирующей сетки расположены точно против витков управляющей сетки, благодаря чему электроны летят к аноду не сплошным потоком, а лучами. Отсюда и название тетрода — лучевой. При этом на экранирующую сетку попадает значительно меньше электронов, так как ее витки находятся «в тени» витков управляющей сетки. Образованию лучей способствуют соединенные с катодом пластины — экраны, ограничивающие боковой поток электронов. При такой конструкции лампы и точно рассчитанном расстоянии между ее электродами выбитые из анода вторичные электроны, не долетев до экранирующей сетки, притягиваются обратно анодом и не нарушают работы лампы.

Лучевые тетроды применяют главным образом в выходных каскадах приемников и усилителей 3Ч, от которых требуется получать электрические колебания звуковой частоты значительной мощности.

Существует много типов других, более сложных электронных ламп, например с четырьмя и пятью сетками, именуемые гексодами и гептодами. Есть комбинированные лампы, объединяющие в одном баллоне две-три лампы. Это диод-триоды, двойные триоды, триод-пентоды и др. Триод-пентод, например, объединяет в одном баллоне триод и пентод. Такая лампа будет использована в усилителе, предназначенном для воспроизведения грамзаписи.

Приходилось ли тебе видеть в некоторых приемниках светящиеся зеленым цветом «глазки»? Это тоже электронные лампы, облегчающие точную настройку приемника на радиостанцию. Их называют электронно-лучевыми индикаторами настройки.

КОНСТРУКЦИЯ, МАРКИРОВКА И ЦОКОЛЕВКА РАДИОЛАМП

Радиолампы предназначаются для работы в самых разнообразных радиотехнических устройствах. В особую группу принято объединять радиолампы, используемые в приемниках, усилителях 3Ч, телевизорах. Ее называют группой приемно-усилительных ламп.

Значительная часть приемно-усилительных радиоламп имеет стеклянные баллоны. Некоторые из них своим видом напоминают пальцы, поэтому такие лампы часто называют пальчиковыми. Металлические баллоны или металлизированные слои, нанесенные на стеклянные баллоны, являются экранами — своеобразными стенками, ограничивающими распространение электрических полей, возникающих внутри ламп, а также защищающими лампы от воздействия на них внешних полей. Они обычно имеют самостоятельные выводы, которые соединяют с заземленным проводником радиоконструкции.