Выбрать главу

Начнем с того, что существуют патенты на поршневые двигатели, способные к нужному увеличению мощности на взлете, и рано или поздно их реализуют.

Вполне возможно, что применение крыла иного, не классического типа, например, решетчатого или многощелевого, позволит получать достаточную подъемную силу на взлете с обычными двигателями. Авиамодельный эксперимент в этом случае может очень многое прояснить.

Между прочим, и здесь полезно пойти уже описанным путем Ломоносова. К тому же есть смысл применить электродвигатели. Они по природе своей способны к кратковременной работе на мощности в 2–3 раза выше номинальной.

Не секрет, что давно существуют гиперзвуковые самолеты, способные летать даже с космическими скоростями. Первый из них — истребитель спутников типа «Бор» — был создан академиком Лозино-Лозинским еще в 60-е годы нашего века. Подобные сверхскоростные самолеты имеют громадный расход топлива, так как отдельные участки их поверхности при движении в атмосфере нагреваются до тысяч градусов.

Авторы патента РФ № 2107010 предлагают способ 100-кратного снижения сопротивления при полете на скорости около 10 000 км в час с одновременным избавлением от аэродинамического нагрева.

Физический процесс, положенный в основу, весьма необычен и сложен, поэтому расскажем о нем в самых общих чертах. Но вначале немного физики.

Любое тело, движущееся со сверхзвуковой скоростью, неизбежно сжимает перед собой воздух. Это приводит к его нагреву и образованию ударных волн, на что тратится много энергии. При движении с дозвуковой скоростью воздух успевает расступиться перед телом, ударные волны не образуются, а сопротивление получается сравнительно небольшим Авторы изобретения нашли способ заставить воздух раздвигаться перед телом, движущимся с гиперзвуковой скоростью (рис. 2).

Рис. 2

Для этого они предлагают при помощи лазерного луча, радиоволн СВЧ или пучка электронов создавать впереди летательного аппарата объем воздуха, нагретого до температуры в десятки тысяч градусов. Этот объем движется вместе с аппаратом и, расширяясь, расталкивает воздух в стороны. Далее его подхватывает водород, выпускаемый из специальных сопел вдоль поверхности аппарата.

Течение налажено таким образом, что аппарат как бы оказывается одет в незримый кокон, движущийся вместе с ним.

Атмосферный воздух не вступает в контакт с поверхностью аппарата, не возникают ударные волны, почти нет аэродинамического сопротивления и нагрева.

Расход водорода составит при этом 100 кг на час полета (то есть на 10 000 км). Новый способ полета будет более чистым в экологическом отношении, а благодаря отсутствию ударных волн — практически бесшумным.

Ясно, что у него огромное будущее. Никаких советов по моделированию таких аппаратов мы вам дать не можем, но любую вашу мысль по этому поводу готовы выслушать.

P.S. Если верить рассказам об НЛО, стоит обратить внимание: некоторые из них, двигающиеся бесшумно и быстро, впереди себя имеют ослепительно ярко сверкающую точку. Это вам ничего не напоминает?

А. ИЛЬИН

Рисунки автора

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Сачок для радиопередачи

У радиолюбителя, решившего построить радиоприемник, глаза разбегаются от обилия конструкций, предлагаемых разнообразной литературой. Что выбрать? Попробуем внести ясность.

Радиосигналы, несущие информацию, достигают «потребителя» благодаря способности электромагнитных колебаний высокой частоты (100 кГц — 100 и выше мегагерц) распространяться на значительные расстояния. Радиочастота, иначе — «несущая» частота, подобно исписанному листу бумаги, несет на себе след — модуляцию колебаниями звуковых частот. В пункте приема, в первую очередь, необходимо выделить колебания с частотой интересующей передачи из числа колебаний с другими частотами. Выделенный сигнал требуется разложить на исходные составляющие — ненужную более несущую и звуковую.

Выбор приходящего сигнала производится с помощью настраиваемого колебательного (резонансного) контура, содержащего индуктивность (катушку L1 на рис. 1) и емкость (конденсатор С1).