Выбрать главу

А.ВИКТОРОВ

СЕКРЕТЫ НАШИХ УДОБСТВ

«Вечная» батарейка

Исследователи-ядерщики вот уже пол века обещают, что вот-вот непременно появится источник почти даровой энергии. На его доведение нужно потратить еще десяток, другой миллиардов долларов, и все будет в порядке.

Тем временем, тихо и незаметно произошла энергетическая революция. Американские исследователи создали микроскопическую батарейку, которая способна десятилетиями снабжать энергией такие устройства, как датчики дистанционного управления, наручные часы или, скажем, имплантируемые в тело человека кардиостимуляторы.

«Источник питания нового типа способен преобразовывать энергию радиоактивного вещества непосредственно в движение, — утверждает Амиль Лал, ассистент профессора в области электрических и компьютерных технологий при университете Корнелла в городе Итака (штат Нью-Йорк). — Он может также генерировать электричество или выдавать энергию в какой-то другой форме»…

Впервые о новых источниках заговорили в августе 2002 года, когда сотрудник Лала, Хью Ли, представил и описал в Детройте опытный образец на встрече исследователей DARPA — агентства по разработке передовых оборонных технологий. Он охарактеризовал этот образец как микроэлектронную электромеханическую систему, сокращенно — МЭМС.

Показанный в Детройте опытный образец выполнен из медной полоски длиной 2 см, шириной 1 мм и толщиной 60 мкм. (К слову, 1 мкм — это миллионная доля метра.)

Сделанная из полоски консоль располагается над тонкой пленкой изотопа никеля-63. По мере распада он излучает бета-частицы. Радиоактивное вещество, как известно, может излучать альфа-частицы, бета-частицы, то есть электроны, и, наконец, гамма-лучи. Однако в первом и последнем случае излучение небезопасно для людей. И для своего прибора Лал использовал изотопы, излучающие лишь бета-частицы, энергия которых настолько мала, что их задерживает даже лист бумаги, не говоря даже о коже человека. Излучаемые электроны собираются на медной консоли, обеспечивая ей отрицательный заряд, а изотопная пленка, теряя электроны, приобретает положительный заряд. Притяжение между плюсом и минусом клонит консоль книзу — до определенного положения. Затем силы упругости пластинки преодолевают электрическое притяжение, и медная пластинка возвращается в исходное положение. После этого все начинается снова.

Данный процесс чем-то напоминает работу дверного звонка, где электрическая цепь то замыкается, то размыкается, благодаря чему электромагнит приводит в движение рычажок звонка. Радиоактивный изотоп может оставаться источником энергоснабжения в течение достаточно длительного периода — от нескольких недель до нескольких десятилетий. К примеру, период полураспада никеля-63 — более сотни лет, и Лал утверждает, что батарейка на этом изотопе могла бы работать по меньшей мере лет пятьдесят.

Сейчас исследователи разрабатывают различные варианты новых источников энергии. Как говорит Лал, опытный образец, показанный в Детройте, — гигант по сравнению с теми, что сейчас в работе. Уже есть образцы, которые вместе с герметичной оболочкой занимают объем не более 1 куб. мм.

Понятно, что уменьшение источников питания повлечет за собой и дальнейшую миниатюризацию целого ряда устройств микроэлектроники.

И. ЗВЕРЕВ

У СОРОКИ НА ХВОСТЕ

ГОЛУБАЯ РОЗА БЕЗ ШИПОВ. Именно такой цветок намерены создать ученые в скором времени. Кроме того, они обещают вернуть розам их чарующий аромат, который они, по словам знатоков, утратили за долгие годы коммерческого разведения. Работы по выведению голубой розы стали неожиданным ответвлением исследований в области создания новых лекарств, которые ведутся в медицинской школе Университета Вандербильда в Нэшвиле. Биохимики Питер Гьюнджерич и Элизабет Джиллам обнаружили, что фермент, выделяемый печенью человека, способен придавать тканям голубой оттенок. Теперь ученые пытаются «пересадить» розам ген, ответственный за выработку этого фермента.

ИНФОРМАЦИЯ НА МОЛЕКУЛЕ. Открытие, способное совершить революцию в технологии хранения и обработки больших объемов информации, сделали американские ученые из университета штата Оклахома. Как удалось выяснить исследователям, одна молекула жидкого кристалла, содержащая 19 атомов водорода, способна «запомнить» как минимум 1024 бита информации. Эксперименты проводились с черно-белым изображением, записанным в двоичном коде, то есть в виде нулей и единиц. Ученые облучали «подопытную» молекулу импульсами электромагнитного излучения, содержащими колебания различных радиочастот. Кроме того, колебания каждой частоты различались по амплитуде, что соответствовало единице или нулю двоичного кода. Такое воздействие и позволило «записать» необходимую информацию на облучавшейся молекуле.