Выбрать главу

Полезную мощность около 28 кВт получили, потратив более миллиона долларов из собственных средств. В 1934 году ученые начали сооружение плавающей установки для производства льда возле Рио-де-Жанейро. Однако при строительстве произошла авария. Продолжить работу Клод и Бушеро не смогли из-за нехватки средств…

Несмотря на всю привлекательность «даровой» энергии океана, строительство океанских электростанций на принципах Д’Арсонваля, Клода и Бушеро оказалось не выгодно. Слишком велики затраты на строительство установки, а окупаются они через десятки лет. В настоящее время лишь в США и Японии есть отдельные экспериментальные установки такого рода.

Но забывать идею не стоит. Ведь в стране есть промышленные предприятия, сбрасывающие теплые стоки, есть горячие ключи. Особый интерес представляют солнечные водонагревательные панели. С каждого квадратного метра такой панели в ясный день можно получить около киловатта тепла. Если его направить на подогрев воды в двигателе Клода и Бушеро, то можно получить до 70 Вт механической энергии. Имеющиеся в продаже полупроводниковые солнечные панели могут дать 90 — 100 Вт, но стоят они в десятки раз дороже…

Если вам захочется повторить опыт Клода и Бушеро, начинать придется с нуля. Первый шаг — это уже описанный опыт с двумя сосудами.

Кстати, если их соединить гибким прозрачным шлангом, то его можно укрепить на столике проектора и увидеть на экране образующиеся у стенок шланга бурные завихрения, свидетельствующие о движении потока пара.

Следующий шаг — заставить вращаться в этом потоке жестяную крыльчатку (см. рис. 3).

Рис. 3

Для этого ее нужно расположить в наглухо закрытом прозрачном сосуде. Его можно склеить из оргстекла. Было бы очень привлекательно вывести наружу вал крыльчатки для последующего соединения с генератором. Но давление в сосуде в тридцать раз ниже атмосферного, и воздух неизбежно проникает через отверстия для вывода вала.

Клод и Бушеро тоже не могли справиться с этой проблемой и потому расположили турбину и генератор под колпаком.

Для нас важно вначале добиться быстрого вращения крыльчатки. Лишь после этого можно думать о соединении крыльчатки с генератором.

Очень многое в этом опыте зависит от качества исполнения крыльчатки. Поищите в школе демонстрационную модель паровой турбины.

Кстати, с ротором подобной модели Клод и Бушеро показывали свой знаменитый опыт. От этого эксперимента всего лишь шаг до практически полезной энергетической установки.

А. ВАРГИН

Рисунки автора

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Слушай мою команду!

Устройство, о котором пойдет речь, может пригодиться как для создания занятной игрушки, так и простого автомата, способного выполнять некоторые бытовые функции. Основная задача аппарата — беспроводное управление посредством звуковых команд. Устройство построим по принципу акустического реле: хлопок в ладоши или свист включит или выключит питание исполнительного узла.

Даже при столь нехитром алгоритме управления появляется возможность пускать в ход игрушку, управлять освещением в темной комнате, включать электровентилятор.

В устройство входит датчик акустических команд, усилитель и логический узел, реализующий последовательность фиксированных действий «пуск — стоп», а также коммутатор «силовой» цепи. Указанные узлы связаны между собой согласно принципиальной схеме, приведенной на рисунке 1.

Рис. 1

Акустическим датчиком служит электронный микрофон ВМ1, получающий питание от 9-вольтового источника через делитель R1, C1, R2. Появление звуковой команды вызывает всплеск тока микрофона, отчего на его выходе образуется импульс напряжения отрицательной полярности. Усиленный транзистором VT1, но уже с положительной полярностью, он поступает через диоды VD1, VD2 на входы логического узла, построенного на ячейках 2И-НЕ DD1.2 … DD1.4. В исходном состоянии ячейка DD1.1 заперта благодаря «заземленному» конденсатору С3 при входах 1, 2, а ячейки DD1.2 … DD1.4 открыты, имея на выходах 4, 10, 11 сигнал низкого уровня. Поэтому связанный с ними составной транзистор («силовой» коммутатор) VT2, VT3 заперт, и его нагрузка в виде двигателя M1 бездействует. Обратно включенный диод VD3 защищает транзисторы от перенапряжения при индуктивной нагрузке.