Выбрать главу

Устройство работает так. В реактор подают жидкость, например, воду. К обмотке подводят постоянный ток. К трубчатым электродам — напряжение от сети. Затем производят разряд конденсатора через пусковые электроды.

Разряд этот распределяется как слабо светящая пленка толщиной 10…50 мкм. Но плотность тока в области его сужения может достигать десятков тысяч ампер на квадратный мм, и это в тысячи раз больше, чем в обычных металлических проводниках. Несмотря на это, проходящая через реактор вода не закипает, а его работа даже не сопровождается шумом.

По мнению авторов, в узкой части разряда происходит отрыв электронов от ядер содержащегося в воде кислорода. Ядра разваливаются, но не как попало, а на устойчивые фрагменты. Самые мелкие из них — дейтоны — представляют собою «слипшуюся» пару протон-нейтрон. Пройдя «горячую» зону, дейтоны снова соединяются в атомы, но уже других элементов. Два атома кислорода могут, объединившись, стать, например, атомом кремния, гелия, или атомом фосфора, кислорода, алюминия… Вариантов много. В одних энергия поглощается, в других возникает ее избыток.

Реактор Вачаева — Иванова можно отрегулировать либо на получение новых элементов при минимальном количестве избыточной энергии, либо на получение энергии при минимальном количестве новых элементов. Ученые пропускали через реактор обычную речную воду и почти без затрат энергии получали из нее десятки новых химических элементов. Еще больший эффект наблюдался при обработке стоков промышленных предприятий и металлургических комбинатов. Таким образом, любое месторождение, дававшее прежде только железо, да и вообще чуть ли не любой ручей может стать месторождением полиметаллических руд.

А вполне возможно, что со временем реакторы Вачаева — Иванова будут согревать и освещать обычные сельские дома. Знай лишь подливай воду.

А. ИЛЬИН

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Повелители радуги

Ученым удалось обнаружить «невиданное физическое явление», уверяет серьезный научный журнал Physical Review Letters. И добавляет следующие подробности.

Известный специалист в области кристаллографии Джон Джоаннопулос из Массачусетского технологического института, а также его коллеги Зван Рид и Марин Солджачич проводили эксперименты, пропуская ударные волны через так называемый фотонный кристалл. Такой материал состоит из нескольких слоев, каждый из которых по-разному пропускает свет. Слои можно использовать для того, чтобы отражать излучения только определенных частот, позволяя свету другой частоты проникать сквозь кристалл.

С помощью компьютерного моделирования ученые выяснили, что если по такому кристаллу ударить определенным образом или возбудить в его окрестностях ударные волны, то они воздействуют на кристаллическую решетку. Кристалл, который обычно пропускает, например, красный свет и отражает зеленый, может стать прозрачным для зеленого света и отражать красный.

Более того, исследователи установили, что фотонный кристалл можно спроектировать таким образом, что фронт ударной волны будет отражать входящий световой поток. В итоге свет многократно переотразится от деформированной и недеформированной частей кристалла, воспроизводя эффект «зеркальной комнаты». Причем после каждого отражения из-за эффекта Доплера свет будет менять свою частоту. При этом если направление движения ударной волны и света совпадает, то частота луча снижается, но возрастает, если движение обеих составляющих направлено навстречу друг другу.

Физики МТИ провели компьютерное моделирование фотонного кристалла (фото внизу).

В итоге примерно после 10 000 отражений, на что уходит около 0,1 наносекунды, свет может, например, из красного стать голубым. Или из видимого диапазона сместиться в инфракрасный. Изменяя кристаллическую структуру, можно заранее точно установить, излучение какой частоты войдет в кристалл и каким оно оттуда выйдет. Можно даже сжать излучение широкого диапазона в узкий пучок. «Иным образом этого не сделаешь, — говорит Джоаннопулос. — Обычные цветовые фильтры просто пропускают одни частоты и отражают другие. Поэтому значительная часть энергии теряется».

Сейчас исследователи и их коллеги из Ливерморской национальной лаборатории имени Лоуренса работают над тем, чтобы продемонстрировать новый эффект на практике. Например, они хотят возбудить в кристалле ударные волны, буквально… обстреливая его пулями. Еще один вариант — возбудить в кристалле акустические волны.