Выбрать главу

Показать дифракцию при прохождении света через отверстие или щель с помощью проектора всему классу нелегко. На экран попадает лишь ничтожная часть света лампы. Концентрация света при помощи линз, повышение яркости лампы, применение электрической дуги помогают мало. Яркости хватает лишь для демонстрации в затемненном помещении. С лазером картина получается яркой, но одноцветной.

Есть, однако, путь, позволяющий получить на экране в сотни раз больше света даже при освещении лампой накаливания и позволяющий видеть спектр дифракции во всей красе. В 1821 г. немецкий оптик Иосиф Фраунгофер изобрел дифракционную решетку, состоявшую из множества одинаковых параллельных щелей (рис. 1).

Так же одинакова ширина всех щелей и расстояние между ними. Вот как эта решетка действует.

Обычный белый свет — это смесь световых лучей разных длин волн, а значит, и разного цвета. Проходя через щель, свет испытывает дифракцию, и составляющие его лучи перераспределяются. Так, синий луч отклоняется на один угол, зеленый и желтый — на другой, красный — на третий, самый большой. Очень важно, что эти отклонения в каждой из щелей одинаковы. (Происходит это потому, что каждая из них имеет одну и ту же ширину.) В результате мы имеем систему параллельных лучей разного цвета.

И тут И. Фраунгофер поставил на их пути собирающую линзу. А она имеет свойство собирать пучки параллельных световых лучей в одной точке. Но точки эти разные. Синие лучи собираются в одном месте, желто-зеленые в другом, красные — в третьем. В результате на экране возникает точно такая же по своей природе система разноцветных полос (спектр), как при прохождении света через щель. Но яркость этих полос в сотни раз выше, чем у отдельной щели. Наибольшая часть света сосредоточена в центре дифракционной картины.

Таким же способом можно показать дифракционную картину на отверстии. Делают рисунок, состоящий из множества круглых одинаковых точек. Его фотографируют и получают негатив из множества отверстий на темном фоне. Каждое отверстие дает свою дифракционную картину, а все они складываются на экране в яркую картину при помощи линзы.

Изобретение И.Фраунгофера нашло применение в спектральном анализе. Вот что это такое.

Любой химический элемент при сильном нагревании переходит в газообразное состояние и светится одним, только ему присущим, светом. Убедиться в этом легко. Бросьте в бесцветное пламя газовой горелки щепотку поваренной соли, и оно вспыхнет желтым. А если внести в него медный купорос, пламя станет зеленым. Но если такой свет пропустить через призму, он распадется на множество разноцветных полос. Каждая из них представляет собою свет строго определенной длины волны. Они образуют как бы штрих-код каждого элемента. Если в пламени присутствует только один элемент, то распознать его по этому «штрих-коду» достаточно легко. Но когда анализируют смесь элементов, то в некоторых случаях спектральные полосы оказываются слишком близко друг к другу, и распознать элементы не удается.

В таких случаях свет пропускают через несколько призм, но возможности этого метода ограничены. Если же свет пропустить через дифракционную решетку, то расстояния между спектральными линиями получаются гораздо шире. На этом и основаны спектроскопы — приборы, позволяющие распознавать смеси множества элементов. Так, например, впервые удалось определить химический состав Солнца и звезд.

Дифракционная решетка позволяет разделить на спектральные составляющие не только свет, но и невидимые — ультрафиолетовое и инфракрасное — излучения. В этих случаях их регистрируют при помощи фотопластинок.

В 1895 году немецкий физик Вильгельм Конрад Рентген открыл странное невидимое излучение. При прохождении через вещество оно почти не преломлялось и не разлагалось на составные части, проходя через дифракционную решетку. Поэтому сначала полагали, что оно не имеет волновой природы. Однако, по мере развития квантовой механики, удалось понять природу возникновения этих лучей, получивших имя рентгеновских. Возникла уверенность в том, что они все же имеют волновую природу, только длина волны у них в сто тысяч раз короче, чем у световых.

Ширина щели самой совершенной дифракционной решетки, применяемой в оптике, была сравнима с длиной световой волны и составляла 0,001 мм. Если действительно длина волны рентгеновских лучей столь мала, то такая щель влияет на них не более, чем десятиметровые ворота на проходящий через них свет! Вот если бы удалось сделать решетку с шириной щели хотя бы в сотни раз меньше, чем у существующих, то удалось бы обнаружить дифракцию и измерить длину волны рентгеновских лучей. Техника таких возможностей не имела. Но нельзя ли такую решетку найти в природе?