Выбрать главу

Еще один опыт Тита, который повторяли многие поколения наших предков. Положите на стол кусок чистого сухого сукна и посадите на него пузырь. Затем потрите щеткой кусок бумаги и поднесите к пузырю. Он вытянется и даже взлетит со стола. Попробуйте объяснить это явление.

Мыльные пузыри можно заставить летать и по-настоящему. Для этого их нужно выдувать при помощи водорода или другого газа легче воздуха. Водород можно получить с помощью школьного аппарата Киппа. Пузыри, наполненные им, быстро поднимаются и исчезают в небе. Высоту, на которую они могли бы подняться, никто не проверял. Но чисто теоретически подсчитать ее не сложно.

При подъеме обычного аэростата водород расширяется и постоянно вытекает через специальное отверстие. В мыльном пузыре отверстия нет, но водород способен легко просачиваться через его стенки. Так что при подъеме пузыря водород начнет уходить через стенки и объем пузыря останется постоянным. Тогда наш «аэростат» сможет подняться на высоту 12–15 км, где плотность атмосферы примерно равна плотности водорода у земли. Правда, это лишь в теории. Примерно на высоте 2–3 км оболочка мыльного пузыря замерзнет, станет хрупкой и будет разорвана давлением водорода…

Не печальтесь, а лучше выдуйте пузырь побольше и поиграйте им в мяч. Для этого наши прадеды надевали пушистые шерстяные перчатки и подбрасывали пузыри тыльной стороной ладони. Веселой игры!

А.ИЛЬИН

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Подземный радиотелефон

В августовском номере нашего журнала мы рассказали о подземной радиосвязи в телеграфном режиме. Сегодня публикуем обещанную схему передатчика средневолнового диапазона, работающего в режиме амплитудной модуляции. Это означает, что с его помощью можно установить телефонную связь.

Скажем заранее, что подземная радиосвязь досконально не изучена и любителя могут ждать сюрпризы. В первом приближении можно ожидать, что дальность связи должна зависеть от влажности почвы, а также от ее строения. Не исключено, что слои почвы, выделяющиеся особыми электрическими свойствами, могут превратиться в каналы, обеспечивающие передачу на очень большие расстояния.

Схема передатчика изображена на рисунке.

Схема электрическая принципиальная передатчика подземного радиотелефона. В качестве приемника нужно использовать обычный приемник, подключив его антенный вход к вбитому в землю штырю и подключив ко второму «землю» приемника.

Электрические колебания звуковой частоты электромагнитного микрофона ВМ1 подаются на вход усилителя, построенного на транзисторах VT1…VT3. Для устранения самовозбуждения два первых каскада развязаны по цепям питания фильтрами R4, СЗ и R9, С4. Имеется возможность регулировать коэффициент усиления тракта переменным резистором R5. С выхода третьего каскада получает питание генератор радиоколебаний, собранный на транзисторе VT4 и развязанный по высокой частоте дросселями L1, L2 и конденсаторами С6…С9. Режим транзистора VT4 по постоянному току задается делителем напряжений R12, R13 и эмиттерным резистором R14, поскольку низкое сопротивление последнего способно шунтировать контур генератора. Последовательно с резистором R14 включен дроссель L5.

Промодулированные «звуковым» усилителем высокочастотные колебания снимаются с контура L3, С10 и подаются на составной эмиттерный повторитель на транзисторах VT5, VT6. Функция последнего — поддерживать достаточно высокую добротность контура, а также его согласование с относительно невысоким сопротивлением земли, контакт с которой обеспечивают металлические штыри. Они присоединены проводами к точкам А1 и А2 схемы. Штыри могут разноситься «по фронту» на расстояния порядка 1…20 метров. Токосъемниками «земляных» радиосигналов служат аналогичные штыри, установленные в месте приема.

Если сигнал слаб, может потребоваться его дополнительное усиление одним-двумя каскадами. Их можно построить по схеме, аналогичной каскаду на транзисторе VT1, с увеличенным до 3 килоом сопротивлением резистора R3. Вспомогательные каскады включают между выходом эмиттерного повторителя (точки A1, А2) и излучающими штырями.