Выбрать главу

Радар же следит не только за перемещением цели, но и полетом собственного снаряда, мины или неуправляемой ракеты. И уже по тому, как полетел тот же снаряд — по его траектории и скорости, — компьютер по особой программе мгновенно вычисляет, куда именно попадет снаряд, еще до того, как он разорвется в конце своего полета.

Как пояснил Д.А. Лазарев, баллистика полета снаряда в каждом случае зависит от очень многих причин: качества пороха в данной партии снарядов, порывов ветра, температуры окружающего воздуха. Компьютер все это учитывает и автоматически вычисляет соответствующую поправку. Наводчик вручную или автоматически поправляет прицел орудия. Таким образом, резко повышается вероятность поразить цель уже вторым снарядом. А это дает не только экономию боеприпасов, но и резко повышает шансы на победу в бою…

После этого объяснения Дмитрий Александрович показал мне некоторые образцы техники, стоящей ныне на вооружении нашей армии. Переносная радиолокационная станция разведки огневых позиций минометов «Аистенок» имеет общую массу 135 кг. А поскольку ее легко разобрать на несколько узлов — антенна, излучатель, тренога, блок управления и т. д., — то перенести ее с места на место может расчет из трех бойцов. При этом контроль за огневыми точками противника ведется с расстояния в 5 — 10 км.

Радиолокационная станция «Кредо-M1» имеет большую мощность и способна обнаружить снайпера или наблюдателя-одиночку с расстояния в 7 км, танк — за 16 км, а разрыв снаряда — за 5 км. Размещают такую станцию обычно на бронетранспортере.

Радиолокационный комплекс разведки ракетных и артиллерийских позиций «Зоопарк-1» базируется на гусеничном шасси танка или самоходки. Он способен одновременно отслеживать до 12 целей, вести корректировку до 40 снарядных траекторий в минуту, выходить на боевую позицию и менять ее в считаные минуты.

Наконец, унифицированная автоматизированная артиллерийская баллистическая станция УААБС ставится прямо на танке, самоходке или артиллерийском орудии повыше ствола и определяет скорость вылетаемых снарядов в диапазоне от 50 до 2000 м/с с погрешностью не более 0,05 %.

Радиолокационная станция «Аистенок».

Радар «Кредо-М1».

Новую технику часто показывают на специализированных выставках.

В. ЧЕТВЕРГОВ

СОЗДАНО В РОССИИ

Ярче тысячи звезд

Недавно на заседании президиума Российской академии наук было заслушано научное сообщение о новых рубежах лазерной физики. О чем же рассказал своим коллегам член-корреспондент РАН, заместитель директора Института прикладной физики (г. Нижний Новгород) Александр Михайлович СЕРГЕЕВ?

С началом XXI века в науке сложилось новое направление, которое называется физика экстремальных световых нолей. Речь идет об импульсах света, длительностью в десятки фемтосекунд (10-15 с) и мощностью в десятки петаватт (1015 Вт). Более того, лазерное излучение, как известно, может фокусироваться в очень маленькое пятно с интенсивностью 1022 Вт на кв. см. А длительность импульсов ныне можно сократить до 100 аттосекунд (10-18 с). С такими величинами и имеет дело физика экстремальных световых полей.

Чтобы было понятнее, что они собой представляют, вот вам такое наглядное сравнение. Десять фемтосекунд — длительность импульса в лаборатории — во столько же раз короче минуты, во сколько сама минута короче времени существования всей Вселенной. Если же говорить о мощностях, то все источники энергии на Земле имеют мощность порядка 11 терраватт (1012 ватт). А пиковая мощность лазера, созданного в Нижнем Новгороде, в 50 раз больше!

Если такое излучение попадает на вещество, то оно переходит в состояние, подобное тому, что, по всей вероятности, имеет место в недрах звезд. Так что новые лазерные комплексы открывают возможность моделировать в лаборатории рождение звезд, процессы, идущие в ускорителях заряженных частиц, ядерные и термоядерные взрывы.

Именно потому сотрудники Института прикладной физики РАН с самого начала работали в содружестве с исследователями Российского федерального ядерного центра (г. Саров), где многие десятилетия ведется разработка и совершенствование новых образцов атомного и термоядерного оружия. И то, что раньше могло быть экспериментально проверено лишь на полигоне, теперь отрабатывается в лабораторных условиях.