Выбрать главу

Если отвлечься от подобных споров, становится ясно, что современная наука все же может разобраться в этом вопросе намного лучше, чем популярные теории и догадки. Как мы увидим дальше, ученые разработали оригинальные способы исследования истории эволюции. И хотя точный ответ на вопрос, когда возникло речевое общение, пока неизвестен, наука уже может проникнуть в тайны развития этой потрясающей способности.

Устная речь включает в себя как говорение, так и слушание, но именно говорение обычно исследуется как уникальное свойство человека. Похоже, мы не боимся, что животные могут понимать наши разговоры. Возможно, это одна из причин, по которой эволюция слуха вызывает гораздо меньше споров, чем развитие речи. Кроме того, имеются значительно более полные ископаемые свидетельства развития уха млекопитающих, что в значительной степени ограничивает возможности для построения умозрительных теорий{17}.

Когда наши позвоночные предки (тетраподы) вышли из моря около 350 миллионов лет назад, возможно, из воды их выманили обитающие на суше беспозвоночные, которые были прекрасной пищей. Acanthostega — пример таких ранних тетрапод. Она похожа на расплющенного уродливого угря с коротенькими ножками{18}. У тетрапод, возможно, были и жабры, и легкие, что позволяло им дышать как под, так и над водой. Однако слышать они могли только под водой. Их анатомия органа слуха формировалась для подводной жизни и была совершенно бесполезна, когда голова высовывалась из воды. Звуковые волны — это очень маленькие колебания давления. Под водой они передаются движением молекул воды, а на суше — молекул воздуха. Воздух и вода — разные субстанции, поэтому тетраподам нужно было прилагать максимум усилий, чтобы почувствовать слабые движения молекул воздуха. И мы с вами сталкиваемся с подобным: слух человека устроен так, чтобы хорошо работать в воздушной среде, но погрузите голову под воду в бассейне, и звуки станут приглушенными.

Двоякодышащие рыбы — ближайшие родственники тетрапод, поэтому их изучение дает нам некоторое представление о развитии слуха. Вот почему Кристиан Кристенсен для своей докторской диссертации, которую он защищал в Орхусском университете, экспериментировал именно с этой группой рыб{19}. Он хотел понять, как развивался их слух, если в воздушной среде двоякодышащие рыбы абсолютно глухи. Для своих экспериментов он заворачивал находящуюся под легким наркозом рыбу во влажные бумажные полотенца и помещал в гамак в центре звукоизолированной комнаты. Кристиан хотел убедиться, что рыба реагирует только на те звуки, которые он проигрывал через громкоговорители. На голове рыбы размещались электроды, позволяющие контролировать нейроны головного мозга.

Вопреки ожиданиям Кристиана оказалось, что двоякодышащие рыбы не совсем глухие. При низких частотах, ниже 200 Гц, рыба могла улавливать звуки выше 85 дБ. Представьте, что блуждающий тромбонист случайно проходит мимо и извлекает из своего инструмента громкий звук прямо в вашей комнате. Хотя у двоякодышащей рыбы нет чувствительных ушей, все же она может «слышать» этот звук: он заставит голову рыбы вибрировать, и именно это движение может передаваться в мозг. «Хотя органы слуха двоякодышащих рыб совершенно не приспособлены к воздушной среде, эти рыбы тем не менее могут слышать издаваемые в этой среде звуки, что было для меня полной неожиданностью, — говорит Кристиан. — Это может свидетельствовать о том, что даже ранние тетраподы и, возможно, их обитавшие в воде предки могли различать передаваемые по воздуху звуки». Однако для тетрапод такой примитивный наземный слух был бы слишком слабым и поэтому бесполезным. Они могли не услышать подбирающегося хищника — если, конечно, он не играл на тромбоне. Но даже если от такого рудиментарного слуха было мало пользы, эволюции уже было над чем поработать.