Выбрать главу

Прежде чем перейти к числам, давайте проследим жизненный путь звезды с самого момента ее рождения.

Звезды рождаются при конденсации межзвездного газа. Газ сжимается под действием собственного тяготения. Разваливается на сгустки. Каждый сгусток продолжает сжиматься, пока недра его не станут настолько горячи, что начинают идти ядерные реакции. Так рождается звезда.

Звезды при рождении имеют самые разные массы. И чем больше масса звезды, тем меньше вероятность ее рождения. Самые распространенные звезды в Галактике — это карлики с массой меньшей, чем масса Солнца. Время их жизни так велико, что даже те карлики, которые родились вместе с Галактикой, еще не завершили эволюцию. А вот массивные звезды, напротив, живут недолго. Звезда с массой 10 масс Солнца светит так ярко, что весь свой запас ядерного топлива сжигает за 100 миллионов лет. И гибнет. Если бы такие звезды не возникали постоянно и в наши дни, то давно бы ни одной массивной звезды в Галактике не осталось. Существует так называемое динамическое равновесие — сколько звезд с данной массой ежегодно рождается, столько же примерно и умирает. Так что общее число таких звезд остается без изменения.

Мы хотим знать, сколько звезд данной массы ежегодно умирает в Галактике. Из наблюдений обычных звезд мы можем, однако, определить, да и то приблизительно, только число рождений. Впрочем, если мы говорим, что умирает ровно столько звезд данной массы, сколько рождается, то достаточно, казалось бы, определить число рождений…

На самом деле все не так просто. Звезда проходит нелегкий жизненный путь, ядерные реакции в ее недрах то затухают, то идут более интенсивно. Меняются источники энергии — когда кончаются запасы водорода, начинают «сгореть» более тяжелые элементы. Кроме того, недра звезды постоянно «клокочут» — одни слои поднимаются вверх, другие опускаются, вещество перемешивается. Из-за этих, а также из-за множества других причин звезда постоянно «худеет» — теряет вещество. Масса звезды перед смертью оказывается заметно меньше той, что была при рождении. А сколько именно вещества звезда успевает потерять — точно неизвестно. Вот еще одна загадка, и, не разгадав ее, никто не сможет сказать, сколько именно звезд в Галактике имеют перед смертью массу большую, чем чандрасекаровский предел. Ведь если масса звезды в конце эволюции окажется меньше, чем 1,4 массы Солнца, то возникнет «всего лишь» белый карлик. Рождение белого карлика сопровождается красивым явлением — образованием и расширением так называемой планетарной туманности. А рождение нейтронной звезды? Можно ли наконец сказать, что оно всегда сопровождается взрывом сверхновой?

Если верны подсчеты звездных рождений, то нужно ожидать, что в Галактике каждые несколько лет коллапсирует одна звезда. А если верны подсчеты вспышек сверхновых, то числа получаются несколько иными…

Еще в 1933 году Ф. Цвикки начал патрулирование далеких галактик с целью поиска сверхновых. Это патрулирование возобновилось после второй мировой войны, продолжается оно и сейчас. Обнаружено более 400 вспышек в различных галактиках. Редко в какой галактике удается наблюдать две или три вспышки — ведь сверхновые вспыхивают редко. Поэтому, для того чтобы оценить, как часто вспыхивают сверхновые, астрофизикам приходится использовать косвенные методы. Так, американский астрофизик Л. Барбон собрал в единый список все вспышки, подсчитал число галактик, в которых эти вспышки произошли, разделил число вспышек на число галактик да еще на время, в течение которого велось патрулирование, и получил, что, например, в спиральных галактиках, таких, как наша, одна вспышка сверхновой случается каждые 30—100 лет. Довольно неопределенная величина, верно? А между тем некоторые исследователи считают, что сверхновые вспыхивают еще реже. Или, наоборот, чаще.

А если попробовать оценить, как часто происходят вспышки сверхновых в нашей собственной Галактике? Сразу скажем, что эта задача потруднее.

В созвездии Кассиопеи находится ярчайший радиоисточник Кассиопея-А. Сверхновая, породившая эту туманность, вспыхнула примерно в 1700 году. Кассиопея никогда не заходит за горизонт в Европе. И все же до недавнего времени считалось, что никто этой сверхновой не видел! 1700 год — прошел почти век после работ Галилея, Кеплера, Коперника. Существовали телескопы. И все же вспышку сверхновой в Кассиопее действительно не видел почти никто.

Лишь в 1979 году американский исследователь У. Эшворт, изучая труды астронома XVII века Д. Флэмстида, обнаружил его записи о звезде-гостье. Вспышка произошла в 1680 году, звезда в максимуме яркости достигала всего лишь шестой звездной величины, находилась на пределе возможности наблюдений невооруженным глазом! Д. Флэмстид включил звезду в свой каталог, опубликованный в 1725 году. Но когда каталог выходил вторым изданием (после смерти Д. Флэмстида), издатели решили, что звездочка в созвездии Кассиопеи нанесена по ошибке — ведь на самом-то деле там, где ее обозначил Д. Флэмстид, ничего нет… Два столетия должны были пронестись над миром, чтобы ошибка издателей была исправлена, а репутация Д. Флэмстида как первоклассного наблюдателя полностью восстановлена.

Почему же сверхновая 1680 года была такой слабой? Дело в том, что в плоскости любой спиральной галактики, и нашей в том числе, очень много пыли и газа. Свет, проходя через эти туманности, поглощается и рассеивается. А наше Солнце находится как раз вблизи галактической плоскости. Мы видим нашу Галактику будто сквозь плотные светофильтры, сквозь темные очки. Блеск некоторых звезд доходит до нас ослабленным в десятки раз! Поэтому мы можем и не заметить даже такое явление, как вспышка сверхновой, что и показала наглядно история со звездой Д. Флэмстида.

Как же оценить, сколько сверхновых вспыхивает в Галактике, если мы их и видим-то далеко не все? Сразу скажем, что надежность таких оценок невелика, но они все же есть. За тысячу лет в небе Земли вспыхнули шесть сверхновых: в 183, 1006, 1054, 1572, 1604 и 1680 годах (правда, последнюю вспышку, кроме Д. Флэмстида, никто не наблюдал). Получается примерно одна вспышка в 170 лет.

Нужно, однако, учесть следующее. Мы наверняка не увидим вспышку, если она произошла за центром Галактики. Так что можно сказать, что лишь третья или даже четвертая часть Галактики доступна патрулированию сверхновых. И значит, реально сверхновые должны вспыхивать в Галактике в три-четыре раза чаще, то есть каждые 40–60 лет. Это не противоречит и тем оценкам, которые получены по исследованиям вспышек сверхновых в других галактиках, подобных нашей. Точность невысока? Что делать, лучшая точность оценок сейчас невозможна…

Теперь нужно подсчитать, как часто рождаются пульсары. К сожалению, частота рождений пульсаров известна с еще меньшей надежностью. За годы, прошедшие после открытия пульсаров, на эту тему было опубликовано много работ. За рубежом вели исследования Р. Манчестер, Дж. Тейлор, М. Ланг, М. Стефане, в СССР — О. X. Гусейнов и Ф. К. Касумов. Выводы всех астрофизиков в общем близки друг к другу: пульсары в Галактике возникают довольно редко, в среднем один пульсар в 30 лет — вот частота их рождения (видите, это число близко к частоте вспышек сверхновых!).

Однако вопрос о том, совпадает ли частота рождений пульсаров с частотой вспышек сверхновых, — все еще открытый вопрос. Здесь есть над чем подумать и наблюдателям, и теоретикам. Слишком уж пока невелика точность оценок.

Еще одна актуальная проблема, связанная с пульсарами: сколько времени пульсар «живет»? Сколько времени проявляет активность нейтронная звезда? Есть пульсары очень молодые (например, пульсар в Крабовидной туманности), а есть чрезвычайно старые, возраст которых перевалил за миллиард лет. Впрочем, последним оценкам особенно доверять нельзя. Они получены по измерениям замедления периода пульсаций. А если период испытал сбой, если в пульсаре много раз происходили «звездотрясения»? Конечно, среди пульсаров есть и «юноши», и «старички», астрофизиков же интересует вопрос: сколько времени пульсар живет в среднем?

Опять приходится обращаться к статистическим исследованиям. И опять оценки получаются не очень-то надежными. По-видимому, через несколько миллионов лет после образования пульсара излучение его резко ослабевает, и пульсар «выключается». Несколько миллионов лет — недолгий срок по астрономическим масштабам времени. Один галактический год — время полного оборота Солнца вокруг центра Галактики — продолжается 200 миллионов лет. Значит, пульсар в среднем «живет» всего-то одну-две галактические недели!