Выбрать главу

Что такое кибернетика?

Итак, робот с помощью своих органов чувств получил информацию о внешней среде: он увидел, услышал, почувствовал… Теперь нужно реагировать на полученные сигналы: протянуть руку, взять нужную деталь, с большой точностью установить её на место, закрепить винтами и т. д. Как все это выполнить «по – человечески» – плавно, без лишней суеты, рывков? Ответ на этот вопрос даёт кибернетика. Кибернетика неотделима от бионики. Говорят даже, что кибернетика родилась «под знаком робота».

В самой краткой формулировке кибернетика – это наука об общих законах управления в живых и неживых системах. О кибернетике каждый из вас немало слышал, а может быть, и читал. Сейчас всякий школьник знает, что такое электронная вычислительная машина, луноход и робот. Всё это – кибернетические машины. Удивительное и кибернетика – рядом. Трудно даже поверить во все её чудеса.

Наверное, каждому из вас хотелось бы поближе познакомиться с кибернетикой, чтобы в школьном кружке или дома с товарищами построить ту или иную кибернетическую модель. Разве не интересно сконструировать своего кибернетического пёсика или небольшую электронную вычислительную машину? Найдутся и такие ребята, которых больше интересует теория: любопытно узнать, какой «алгеброй» пользуются вычислительные машины или как подсчитать количество информации в прочитанной книге?..

3. Моделирование – экспериментальная основа роботостроения

Пытаться конструировать радиоэлектронные системы роботов, не представляя хорошо их теории и физических основ, – это значит работать с очень низким коэффициентом полезного действия. Создать какую – либо систему робота, не понимая её сути, невозможно. Работа должна строиться на прочной основе теоретических знаний – только тогда конструктор с каждой новой разработкой будет расширять диапазон своих знаний и переходить к новым рубежам творчества.

Партией и правительством перед народом Советского Союза поставлена важнейшая задача – всемерное ускорение научно – технического прогресса. Это относится не только ко взрослым, но и к школьникам. Перед юными техниками стоит задача: в короткие сроки освоить элементы теории радиоэлектроники, микросхемотехники и робототехники. Всё это – новейшие сложные области техники, без их знания немыслим современный знающий инженер, техник и зачастую даже квалифицированный рабочий. Но если изучать их старыми методами – только по книгам, – то без определённой системы достичь чего – либо существенного будет трудно. Как же быть?

Учёные утверждают, что лучшим способом освоения теории является эксперимент. С каких же экспериментов лучше всего начинать?

К примеру, в этом вам может помочь серийно выпускаемый промышленностью конструктор «Радиокубики». Если на монтаж с помощью пайки и наладку громкоговорящего приёмника у ребят уходит иногда до двух – трёх месяцев, то для сборки такого же приёмника из магнитных радиокубиков нужно всего три – пять минут. Три минуты вместо трёх месяцев! Вот вам и пример ускорения научно – технического прогресса.

Пользуясь радиокубиками, вы изучите теоретические основы радиоэлектроники, ознакомитесь с различными радиодеталями, их назначением и свойствами.

Затем можно будет последовательно переходить к следующим конструкторам, выпускаемым промышленностью: модульному для сборки сложных радиоэлектронных систем из простейших типовых узлов – модулей; для изучения логических основ построения ЭВМ и знакомства с микросхемотехникой; для сборки и исследования основных каналов ЭВМ.

Обо всех этих конструкторах мы ещё расскажем, а пока ответим на вопрос: что же это такое – моделирование и как оно применяется в практике современного технического конструирования?

Модель и моделирование

Современные научно – технические исследования и промышленное строительство ведутся с огромным размахом, и на них затрачивается много средств (вспомним хотя бы о космических исследованиях). Поэтому ошибки или просчёты могут привести к бесполезной грате материально – технических и людских ресурсов. Этого можно избежать, если предварительно изучить процессы и явления, протекающие в реальном объекте, с помощью модели. В технике моделью называют уменьшенное или упрощённое подобие интересующего нас объекта, для которого характерны процессы, сходные с процессами, происходящими в этом реальном объекте. Изучение свойств модели даёт ориентировочное представление о свойствах и возможностях объекта.

В качестве моделей иногда применяют устройства, имеющие физическую природу, отличную от природы оригинала.

Недаром В. И. Ленин в своей работе «Материализм и эмпириокритицизм» писал: «Единство природы обнаруживается в „поразительной аналогичности“ дифференциальных уравнений, относящихся к разным областям явлений» [В. И. Ленин. Полн. собр. соч. Т. 18. С. 306.].

Существуют аналогии между законами, выражающими различные физические явления. Например, аналогичны закон Ома для электрического тока, закон Фурье для теплового потока и закон Дарси для скорости фильтрации жидкости через пористую среду. На основе метода аналогии и создают модель. В ней известные процессы, все параметры которых легко поддаются измерению, описываются той же системой уравнений, что и изучаемые процессы в оригинале.

Современные любительские конструкции роботов содержат множество сложных радиоэлектронных систем, предварительную отработку которых также целесообразно проводить на моделях. В качестве технического средства моделирования различных систем роботов можно рекомендовать радиокубики. Мы уже их упоминали, а теперь расскажем о них подробнее.

Даже в сравнительно простых имитаторах речи автоматов («электронные сирены» и др.) или «речи» животных (пение птиц, лай собаки и др.), содержащих сотню и более деталей, требуемое подобие сигналов схемы естественной «речи» животных или машин можно получать, меняя параметры трёх – пяти различных деталей. Вот тут – то и приходят на помощь радиокубики. Они позволяют быстро и весьма наглядно решать основные задачи радиоэлектроники – от сборки простейшего детекторного приёмника до различных импульсных устройств и элементов электронных вычислительных машин. Для любителей – роботостроителей такие кубики очень удобны. Они есть в продаже, но их можно сделать и самостоятельно. Из кубиков собирают самые различные устройства – от простейшего детекторного приёмника до громкоговорящего приёмника или даже модели нейронов мозга.