Выбрать главу

Интересно, что получится, если мы суммируем такие «сдвинутые» колебания? Не надо думать, что это есть лишь теоретическое упражнение — суммировать электрические колебания разного вида приходится довольно часто. Математически это будет выглядеть, как сложение формул (2.1) и (2.2):

U = A1∙sin (2π∙f1t) + A2∙sin (2π∙f2t + φ). (2.3)

Обратите внимание, что в общем случае амплитуды и частоты колебаний различны (на рис. 2.3 они одинаковы!).

Чтобы представить себе наглядно результат, надо проделать следующее: скопировать графики на миллиметровку, разделить период колебаний на несколько отрезков и для каждого из них сложить величины колебаний (естественно, с учетом знака), а затем по полученным значениям провести график. Так делали все— от школьников до ученых-математиков— еще лет двадцать назад. Теперь, конечно, удобнее проделать то же самое на компьютере: либо загрузить значения функций в Excel, либо (что, на мой взгляд, гораздо проще) написать программу, которая вычисляет значения по формуле (2.3) и строит соответствующие графики. Если сложить два колебания, которые были представлены на рис. 2.3, то получится результат, показанный на рис. 2.4. Обратим внимание на тот факт, что период результирующего колебания в точности равен периодам исходных, если они одинаковы, а вот амплитуда и фаза будут отличаться.

Результаты таких упражнений могут быть весьма неожиданными и вовсе неочевидными: скажем, при сложении двух синусоидальных колебаний с одинаковой частотой и амплитудой, как на рис. 2.3–2.4, но со сдвигом фаз в 180° (когда колебания находятся в противофазе), их сумма будет равна нулю на всем протяжении оси времени! А если амплитуды таких колебаний не равны друг другу, то в результате получится такое же колебание, амплитуда которого равна разности амплитуд исходных.

Рис. 2.4. Суммирование колебаний:

1 — исходные колебания; 2 — их сумма

Этот факт иногда используется для того, чтобы получить нестандартные напряжения с трансформатора с несколькими обмотками — если их обмотки подключить последовательно (начало одной к концу другой, см. главу 4), то напряжения суммируются, а если их включить встречно (начало одной к началу другой), то напряжения вычтутся, причем при строго одинаковых обмотках напряжение на выходе будет равно нулю!

Если у вас есть какой-нибудь низковольтный трансформатор под рукой, то можете поэкспериментировать с соединением вторичных обмоток, учитывая при этом, что начала обмоток будут иметь нечетные номера, а концы — четные. Только не ошибитесь, и не замкните что-нибудь с сетевой (первичной) обмоткой — это опасно и для вас, и для трансформатора, и для предохранителей в квартире. Так что если трансформатор вам незнаком, то необходимо сначала добыть его описание и определить, где у него сетевая обмотка.

Значения напряжения, естественно, можно измерять любым мультиметром, но вот вопрос на засыпку: что именно будет показывать вольтметр переменного тока? Ведь измеряемая величина все время, с частотой 50 раз в секунду, меняется от минимального отрицательного до максимального положительного значения, т. е. в среднем равна нулю. Тем не менее вольтметр нам покажет совершенно определенное значение. Для ответа на вопрос, какое именно, отвлечемся от колебаний и поговорим об еще одной важнейшей Величине, которая характеризует электрический ток: о мощности.

Мощность

Согласно определению, мощность есть энергия (работа), выделяемая в единицу времени. Единица мощности называется ваттом (Вт). По определению, 1 ватт есть такая мощность, при которой за 1 секунду выделяется (или затрачивается — смотря с какой стороны поглядеть) 1 джоуль энергии. Для электрической цепи ее очень просто подсчитать по закону Джоуля-Ленца: Р (ватт) = U (вольт) ∙ I (ампер). Если подставить в формулу мощности выражения связи между током и напряжением по закону Ома, то можно вывести еще два часто употребляющихся представления закона Джоуля-Ленца: P = I2R и P = U2/R.